
NAVAL POSTGRADUATE SCHOU'
Monterey, California

Lfl
00

--] .,,,%

THESIS
INVESTIGATION AND IMPLEMENTATION OF AN

ALGORITHM FOR COMPUTING OPTIMAL
SEARCH PATHS

by

James F. Caldwell, Jr.

September 1987

Thesis Advisor: James N. Eagle

Approved for public release; distribution is unlimited

J 1. 14Y

rawVW n, WW 'X 1T m a~n flsrrr -wrwrn,.nnr.. /,--.. . ,. . , ... <.- .

SECURITY CLASSIFICATION eOP THIS PAGE ,-

REPORT DOCUMENTATION PAGE
ia REPORT SECURITY CLASSIFICATION Ib RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECuRITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION'/AVAILABILITY OF REPORT .

Approved for public release;
;t DECASSF;,CATONOOWNGRAOING SCHEDULE distribution is unlimited.

4 PERFORMiNG ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERIOPIMING ORGANIZATION 6b OF'FCE SYMBOL ?a NAME OF MONITORING ORGANIZATION
(If appli(able)

Naval Postgraduate School 55 Naval Postgraduate School
6c ADDRESS Cty State and ZIP Code) 7b AOORESS(C,ey. Stare, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

8& NAME OF FuNOINGSPONSORING 8 b OFAiCE SYMBOL 9 PROCUREMENT INSTRtiJMENT IDENTIICAriON NUMBER
0RGANIATION (If appihcable)

dc ADORESS(Cirý. State. and ZIPCode) 10 SOURCE OP FUNOING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESS:ON NO

.T.':E (include Securiry Claulicatio,•) Investigation And Implementation Of An
Algorithm For Computing Optimal Search Paths

PERSONA. AUTHOR(S) CALDWELL, James F., Jr.

WOPRT 3t TIME COVERED 114 DOF4EPORT at Mnth Day) I AE(QNi• •as ers Thesis FROM Teo eme
L. It PI 00

'6 S•_-P,.EV 1NTARY ;dOTAT:ON

,, COSAT, CODES 1 ISA CT TF.RM? Or(ron1u oe f nlyeua ar,. _d n. bIII humoar)

ELD GROUP SuB-GROUP up za. earcn .[/:•• ra -W e Mehod,
GBBranch-And-Bound, Search, Optimal Search,

" I "" 4 - .RACt (continue on ,,tver i t, e(eItf ryd a dentify by block numbe,)
Snmoving I rgetis deected at long range with an initial position

given by a probability distribution on a grid of N cells, Also located
on the grid is a searcher, constrained by speed, who must find an
optimal search path in order to minimize the probability of target
survival by time T. A branch-and bound algorithm designed by Professors
Eagle and Yee of the Naval Postgraduate School in Monterey, California,
is successfully implemented in order to solve this problem. Within the
algorithm, the problem is set up as a nonlinear optimization of a convex
objective function subject to the flow constraints of an acyclic N x T
network. Lower bounds are obtained via the Frank-Wolfe method of
solution specialized for acyclic networks. This technique relies on
linearization of the objective function to yield a shortest path problem

,0 D S'Q'3u':ON, AVAILABILITY O ABSTRACT 21 ABSTRACT SECURITY CLASSIFIC.ATION
Cj[•NCLASSIIEi,•UNL'MITEO 0 SAME AS RPT COTIC uSERS Unclassified

22a I.AME OF FRESPONSI@Lk NDIVIOUAL 221TýJP 2c OFv-2oYMBO
James N. Eagle, Prof. 0-9P- 4 I 55Er

00 FORM 1473. 84 MAR 63 APR ed,t,on -Ay be used uti eiQihuste(d SECUNITY CLASSIFICAtION OF THIS PAGE
All otmer edtions alre obsolete

r04

MSCURITY CLASSIFICATION OF T14i PAGI (gMW6 D40 I tio-*

Block 19 Abstract Continued

that is solvable by dynamic programming. For each
iteration, the lower bound can be found by use of a
Taylor first order approximation. Implementation of
this algorithm is accomplished by the use of a Fortran
program which is run for several test cases. The
characteristics of the solution procedure as well as
program results are discussed in detail. Finally, some
real world applications along with several questions
requiring further research are proposed.

A ,c •io ;i Fo,
[,7,TC T /,5

V -]

"...

S N 0102. LF-.014.6601 2

SUCuI ITY C6AGSIPICATIOU Olt TWIS PaSE(01ff.e 0006 ff r4ud)

Approved frpublic release; distribution is unlimited.

Invetigaion nd inplenct-crta~tion
ofan Alo ith lr Computing

Optimal Scarch Paths

by

James F. Caldwell, Jr.
Lie~utenant, United Statcs Navy

B.S., United States Naval Academy, 1981

Submitted in partial fulfillment of the
rcquir, -nents for the degree of

NMASi ER OF SCIENCE IN OPERATIONS RESEARCH

from the

NA\VAL POSTGRADUATE SCHOOL
September 1987

Author: ý ýý

Approved by:A .m sN ei d i o

I-sn~l eodRae
'4 ; P 4

ABSTRACT

A moving target is detected at long range with an initial position given by a

probability cLstribution on a grid of N cells. Also located on the grid is a searcher,

constrained by speed, who must find an optimal search path in order to minimize the

probability of target survival by time T. A branch-and-bound algorithm designed by

PmrlssorE Eagle and Yee of the Naval Postgraduate School in Monterey, California, is

.'ucces: fully implemented in order to solve this problem. Within the algorithm, the

probiem o set up as a nonlinear optimization of a convex objective function subject to

the flow constraints of an acyclic N x T network. Lower bounds are obtained via the

Frank-Wolf/e method of solution specialized for acyclic networks. This technique relies

on linearization of the objective function to yield a shortest path problem that is

solvable by dynanic programming. For each iteration, the lower bound can be found

by use of a Taylor first order approximation. Implementation of this algorithm is

accomplished by the use of a Fortran program which is run for several test cases. The

characteristics of the soluticn procedure as well as program results are discussed in

detail. Finally, some real world applications along with several questions requiring

further research are proposed. - - •- -

4

TABLE OF CONTENTS

INTRODUCTION.. 9
A. BACKGROUND .. 9
B. PROBLE.M DEFINITION................................. 9
C. PREVIOUS WORK 1I1

II. THE OPTIMIZATION PROBLEM.............................. 13

Ill. THE IN-FINITELY DIVISIBLE PROBLEM 17
A. DESCRIPTION' OF THE ALGORITHM 17
B. IMPLEMENTATION OF THE DIVISIBLE SEARCH

EFFORT PROCEDURE.................................. 19
C. SUMMARY ... 22

IV. THE INTEGER PROGRAMMING PROBLEM 24

A. DESCRIPTION OF THE ALGORITHM 24
B. IMPLEMENTATION OF rHE INTEGER

PROGRAMMING PROCEDURE.......................... 26
C. SUMMARY ... 30

V. APPLICATION'S.. 32
A. INTRODUCTION 32
B. A DIVISIBLE SEARCH EFFORT APPLICATION 32
C. THE INTEGER APPLICATION........................... 43

D. LARGER INTTEGER APPLICATION'S...................... 45

E. SUI.-MARY ... 46

VI. CONCLUSIONS .. 49

A. SUMMARY OF HIGHLIGHTS 49
B. PROPOSED REAL WORLD APPLICATIONS 50
C. UNANSWERED QUESTIONS 50

5

APPENDIX A: DERIVATION OF COMPUTATIONAL FORMULAS 52

1. CALCULATING THE PROBABILITY OF
NONDETECTION .. 52

2. CALCULATING PART IAL DERIVATIVES 55

APPENDIX B: DIVISIBLE SEARCH EFFORT PROGRAM LISTING 58

1. SOME DETAILS ON PROGRAMMING METHODS 58

2. PROGRAM LISTING 58

APPENDIX C: BR&NCH-AND-BOUND PROGRAM LISTING 71
1. SOME DETAILS ON PROGRAMMING METHODS 71
2. PROGRAM LISTING 71

LIST' OF REFERENCES .. 86

INITIAL DISTRIBUTION LIST ... 87

6

__]1

LIST OF TABLES

1. RUN TIMES FOR VARIOUS PROBLEMS.......................... 133
2. RUN TIMES AND PATHS FOR LARGE INTEGER PROBLEMS 47

LIST OF FIGURES

1.1 Typical Grid and Numbering System 10
2.1 Network and Associated Flows 14
3.1 Graphical Representation of the Frank-Wolfe Linearization 18
3.2 Flowchart for Infinitely Divisible Search Effort Problem 20
3.3 The Lower Boutid Shown Graphically 21
3.4 Convergence of Probabilities During Frank-Wolfe Iterations 23
4.1i Tree Representing Possit 'l. Search Paths for a Nine Cell Problem 24
4.2 Flow Chart Showing Integer Solution Procedure 27
4.3 Stopping the Lower Bound Calculation Early 29
4.4 Optimal Integer Paths for a Nine Cell Problem of Ten Time Periods 30
5.1 Allocation of Search Effort for Time Period 1 on a 15 by 15 Grid 35
5.2 Allocation of Search Effort for Time Period 3 on a 15 by 15 Grid 36
5.3 Allocation of Search Effort for Time Period 6 on a 15 by 15 Grid 37

5.4 Allocation of Search Effort for Time Period 7 on a 15 by 15 Grid 38
5.5 Allocation of Search Effort for Time Period 8 on a 15 by 15 Grid 39
3.6 Allocation of Search Effort for Time Period 9 on a 15 by 15 Grid........40
5.7 Allocation of Search Effort for Time Period 16 on a 15 by 15 Grid 41
5.8 Allocation of Search Effort for Time Period 25 on a 15 by 15 Grid 42
5.9 Trial Paths for a 7 by 7 Grid Problem With 10 Search Periods 44
5.10 Optimal Integer Solutions for the 7 by 7 Grid With 10 Search Periods 45

5.11 Graph Displaying Run Times for Integer Problems 48

8

i. INTRODUCTION

A. BACKGROUND

Consider a target detected at long range with some position uncertainty, and a
se'-.rcher, constrained by speed. tasked with closing the range to the target within a
specified period of time. Intelligence estimates regarding the target's probable
movements are provided to the searcher who must use this information to develop a
search path that will bring him c'lose enough to the target for tracking or possibly
weapons delivery. This problem may represent an antisubmarine warfare (ASW)
search in which a single surface ship attempts to localize a submarine contact. In some
instances near-optimal solutions can be obtained based on experience, yet in many
other cases the best search path may not be readily apparent. Current search practice

dictates a systematic approach to this problem such as sweeping out areas without
overlapping until the entire area of uncertainty has been thoroughly swept. Intuitively

this procedure seems correct, however this has never been established as the best or
even nearly optimal search technique. It is for this reason that the study of optimal
search paths is of interest, for in discovering optimal paths for various prob;ems new
insights into search theory may be gained.

B. PROBLEM DEFINITION
A grid of N cells as shown in Figure 1.1 is constructed on which a target and a

searcher are located. The target's starting position may be represented as a single cell
or perhaps by a probability distribution over any number of cells, while the searcher's

initial position is specified as one particular cl-U. The problem proceeds discretely
through a series of searches and movements that span a finite time interval of duration
T. For each time period, the target moves according to a Markov transition matrix
that is defined from prior intelligence known to the searcher. Searcher movements are

constrained such that if he currently occupies cell i, in the next time period he may
travel only to the adjacent cells specified by the set CV. In order to quantify the
effectiveness of the searcher's movements the probability of nondetection is adopted as
a suitable measure. Hence the solution to the problem is a feasible search path of T
sequentially adjacent cells which, if followed, muinimizes the probability of not detecting

the target.

9

1 2 3 4 S

6 7 a 9 10

11 12 13 14 1s

- --is 0 0 a 0

* 6 3 0 N-S

N-4 J1-3 1-2 N-1 N

Figure 1.1 rypical Grid and Numbering System.

Describing the problem a bit more graphically, we can imagine the target's initial

probability mass dispersed over a collection of cells. The searcher initially located in

cell i conducts a thorough scarch of that cell. If any of the target's probability mass is

located within cell i, a percentage of this mass is detected or "cut away". This

percentage will vary as a function of the total search effort in the cell and is spccified

by I detection function known to the searcher. Any target mass outside of cell i is

undetectcd. After the search, all remaining probability mass is relocated on the grid

according to the Markov transition matrix. Additionally, the searcher is free to move

as long as he remains within the set of adjacent cells C,. This sequence of searches and

Smovements is repeated for T time periods, with the searcher slowly whittling away at

the target's probability mass. At the end of period T, the resi(.al target mass is

collected and totalled to yield the overall probability of nondetection.

As will be discussed in the next chapter, the problem may be formulated as a

network of N x T nodes, in which nodes represent cells for specific time periods and

arcs dcpict the flow of search effort through the grid. With the objective functionI• defined as the T-timc period probability of nondetection and a suitable detection

function specified, the problcm becomes one of minimizing a convex function subject

10

to network flow constraints. Solutions to this problem involve two cases of interest.

The first consists of divisible search effort in which the searcher is allowed to divide the

resources available for each time period among several cells. An example of this might

be an aircraft engaged in ASW search. Here the aircrafts speed advantage allows him

to divide his efforts over a large area. Similarly, a search party consisting of several

men might fractionate into smaller groups in order to cover more ground. For this

case, the network constraints can be shown to specif'y a convex feasible region with the

resulting problem being solvable by a linearization method. The second case is that of

nondivisible search effort and shall be referred to as the integer programming problem.

This is more characteristic of searches involving single units such as surface

combatants or submarines. Here the searcher cannot divide his resources and speed

linutations restrict him to much smaller areas of coverage, This case is much more

difficult to address and is solved here with a branch-and-bound algorithm that is

presented in Chapter IV.

C. PREVIOUS WORK

This problem has been addressed by several individuals using a variety of

approaches. Brown [Ref. 1] proposed a solution for which the search effort was

allowed to fractionate infinitely. Within each cell he specified an exponential detection

function such that if x units of search effort were placed in cell i where the target is

located, the probability of nondetection is given by exp(- Pi x). (Where P3i is the

search effectiveness in cell i.) In doing so, he was able to formulate the problem as a

convex nonlinear problem and develop an iterative technique for computing optimal

search plans. However he allowed no constraints on searcher motion. By constraining

searcher movements and using a dynamic programming technique, Eagle [Ref. 21 was

able to find an optimal solution to a relatively small inte-er problem but at the expense

of a large amount of computer time. A apparently more efficient heuristic for solving

the integer problem was posed by Stewart [Ref. 3] in which a branch-and-bound

algorithm employed a modified version of Brown's procedure to calculate a lower

bound on trial paths. However Brown's procedure assumes a convex feasible region

which is not the case for the integer problem . Thus the "lower bounds" generated are

only approximate, and it is possible to incorrectly fathom a branch containing an

optimal path. Nonetheless, Stewart believed that near-optimality would be achieved

and that this branch-and-bound procedure is probably a good heuristic.

II

More recently a technique designed by Professors Eagle and Yee [Ref. 4] at the

Naval Postgraduate School in Monterey, California, uses the branch-and-bound

algorithm as proposed by Stewart yet relies on a better submodel for calculating lower

bounds. The submodel used in this tec.hnique was developed by Professor Yee. It

imposes the constraint on sercher moti': , hut relaxes the constraint on divisiblity of

sear•ýh effort, thereby creating a convex feasible region. This subroutine is very similar

to the procedure suggested by Stewart [Ref. 3: pp. 131-2] for solution of the divisible
search effort problem and caai be shown to yield reliable lower bounds to the integer

problem. This paper will explore implementation of this algorithm and propose some

possible uses of the procedure.

12

II. THE OPTIMIZATION PROBLEM

As originally proposed by Stewart [Ref. 3: pp. 130-132], this problem may be. set

up as network of N by T nodes, where each node represents a particulai cell in a

specific time period. Borrowing from Stewart's notation, the target's path through the

network may be described by the vector a)= {co(l), o)(2), ... , o(T)}, where w(t)

represents the target's position at time t and p, gives the probability that path 0) is

taken. Search flow through the network is given by x(i,j,t), representing a flow of

search effort from cell i in time period t to cell j in time period t + 1. The network and

some example flows are illustrated in Figure 2.1. Recall that for each time period the

searcher is constrained to the cell he previously occupied or any adjacent cells. ILet C.

be the set of all cells adjacent to cell j. Then the total search effort in cell j in time t,

X(j,t), is found by summing all flows into the cell as shown in Equation 2. I

X(j,t) = • x(i,j,t- I) for t= 2, . . ., T (eqn 2.1)

i e C

This equation holds for all time periods t except when t= 1. The values X(j,l) are

given as an initial conditions for the problem. We will assume that X(j,I)= I if j is the

searcher's starting cell, and X(j,l)=0 otherwise. Using the assumption of an

exponential detection function, the probability of target nondetection in cell j during

time t is found by:

exp{ - •j X(j,t)) = exp{ - .i x(i,j,t - 1)J (eqn 2.2)

ie C

Here P, gives the search effectiveness within cell j where P. ;> 0. Finally when

considering all possible target paths, the probability of target nondetection, Q, after T

periods of search is given by:

T
Q = 0 p.) exp{ - It= I I30(t) X()(t),t)} (eqn 2.3)

13

t=1 t2 t-3 t=T-1 t=T

X(1,1)=l

X(3,1)=0P 0 .0 0

i= 0 - 0 6. 0 0

X(3-1, 1)=--

Xl(M, 1)-- =1 -0 00*0
1.. oo..

Figure 2.1 Network and Associated Flows.

14

pa p- - , ' .~-,v'. w.J~ ~J~'J.' .~~~

A possible modification to this is to allow the search effectiveness parameter to

be associated with the arc instead of the node. We introduce the parameter aii,
reprezenting the search effectiveness of 4 flow of effort from cell i to cell j. Initially tiu

is assumed to be constant throughout the problem, however the procedure could easily

incorporate changes in ai. over time (for instance the parameter could become atjt). By

introducing the above modification and accounting for search in time period 1, the

probability Q may be rewritten as:

Q = p(, exp(-X(0(1),1)- T,_ 2 ,(t) x(i,(O(t),t-l)) (eqn 2.4)

i e CC(t)

This is the objective function that a searcher wishes to minimize subject to the

constraints of flow balance at each node. Note that there is no search effectiveness

parameter included with the search effort for period 1. This is because in time period 1

-3. is assumed to be equal to I for all j. The optimization problem is shown below:

* Minimize: T

-- -p, exp{- X(o(l),1)- 2 i,(O(t) x(i,o(t),t-l)) (eqn 2.4)

i e CCo(t)

subject to

X(i,1) - • x(i,j,l) - 0 i e {(,..., N}
j r=Ci

Sx(i,j,t- 1) -E x(j,k,t) = 0 j e {1,..., N)
i r= Cj k e Cj t e (2, ... , T- 1)

x(i,j,t) e (0,1)

The objective function as written may not be useful for computational purposes

because it requires prior knowledge of p.) in addition to the complete enumeration of

all possible target paths. For these reasons a computational formula is used within the

algorithm which exploits the Markovian nature of the target's motion. Derivation of

15

this formula is shown in Appendix A. It is however useful to present the objective

function as shown above because close examination reveals it to be the convex sum of
convex terms, or hence, a convex function IRef. 3: p. 1311. Thus it can be seen that the
problem is a nonlinear optimization of a convex objective function. Furthermore, the
constraints are linear and highly structured. Specifically, they represent an acyclic
network flow problem.

16

I
_

III. THE INFINITELY DIVISIBLE PROBLEM

A. DESCRIPTION OF THE ALGORITHM
"Ideally , we would like to solve the search problem for the indivisibility of search

effort. In other words, a solution is sought for which x(i,j,t) (and hence X(j,t)) are
either 0 or I. However for this case, the feasible region is a set of discrete points in N-
space, and the problem is very difficult to solve. If, as Brown suggests the search effort
is allowed to fractionate infinitely, the constraints describe a convex feasible region.
Then a solution to the infinitely divisible problem may be calculated iteratively by
following Stewart's suggestion [Ref. 3: p. 1311, of linearizing the objective function and
solving the resulting linear program (LP). What makes this procedure feasible is that
the LP is an acyclic shortest path problem which can be solved easily and efficiently
without the use of a general LP solver.

The method of solution used here for the nonlinear program was first introduced
•k. by Frank and Wolfe in 1956 [Ref. 5] and is described below. Given an initial set of

feasible flows, the objective function is evaluated. Let this solution point be known as
X1. Next, the objective function is linearized by calculating all possible partial
derivatives and then substituting these as edge costs within the network. If Q
represents the value of the original objective function and 'I represents the linearized
objective function then, the linear subprogram becomes one of minimizing:

'(X) = Q(X1) + VQ(X 1) (X-Xl) (eqn 3.1)

subject to the network constraints as before (Note: VQ(XI) is the gradient of Q
evaluated at the point X1). Because each of the search flow arcs connects time period t
with time period t+ 1, the network can not cycle. Also, since increasing the flow along
any arc cannot increase the objective function, all edge cost are nonpositive. So the
"linear subproblem which solves for 1ý becomes an acyclic shortest path problem with
nonpositive costs. Graphically this is shown in Figure 3.1. At the point X1 the
gradient is found and the objective function linearized. In finding the shortest path, the
algorithm decreases the value of the linearized objective function until point X2 at the
edge of the feasible region is reached. It is important to note that X2 is always an

17

extreiie point on the feasible region, and that the linearized objective function always
underestimates the value of the rc :I objective function. This occurs because a first

order Taylor approximation underestimates a convex function. Later this
consideration becomes important when a lower bound to the integer solution is sought.

SD!RECTION OF DECRZASINGC
OBJECTIVE FUNCTION

GRADIENT

X 1

FEASIBLE REGION/

Figure 3.1 Graphical Representation of the Frank-Wolfe Lineariiation.

The next step is to conduct a line search from X1 to X2 for the point that
minimizes the original objective function Q. After updating X1 with the flows defined

by the minimizing point from the line search, the procedure repeats itself until some

stopping criteria is met. This iterative technique for solving the infinitely divisibl.-
problem is essentially the same as proposed by Stewart with the exception that there
are no upper bounds placed on flow efforts x(i,j,t). The importance of this relaxation is
that it maintains the linear subproblem as an acyclic shortest path problem, which is
perhaps the easiest of all nontrivial L.1's to solve.

is

B. IMPLEMENTATION OF THE DIVISIBLE SEARCH EFFORT PROCEDURE

The divisible search effort algorithm was coded in Fortran and run on the Naval

Postgraduate School's IBM 3033 mainframe computer. The progranm was written in

general fashion such that minimal changes are required to ni problems of various
sizes. Because the infinitely divisible program is a subprogram of the branch-and.

bound solution, much time and effort was spent to develop an efficient algorithm. For

this -eason the program makes extensive use of subroutines and special data structures

such as adjacency lists [Ref. 6: pp. 200-1] in hopes of obtaining efficiency with minimal
storage requirements. Specific details of the program are provided along with a
program listing in the Appendix B. This section will serve merely as a synopsis of the
salient features of each implementation.

An initial feasible solution is input to give a starting point for the algorithm.
This point, X1, consists of a set of flows associated with the searcher remaining in his
starting cell for the entire T time periods. Given this set of flows, the probability of

nondetection, labelled PND 1, is calculated via the computational formula listed in

Appendix A. Additionally the probability of nondetection can be divided into "reach"
and "survive" probabilities (also presented in Appendix A) which are used to calculate

the partial derivatives at X1 . Once these partial derivatives are found and the objective

function linearized, a simple dynamic prograrmning technique is used to find the

shortest path through the network to yield the extreme point X2 that minimizes the

linear objective function. A quadratic line search is then used to find the minimum

probability of nondetection along the line from the start point X1 to the extreme point

N, X2. This new point becomes X, for the next iteration and the whole procedure repeats

itself until the stopping criteria is met. This procedure is illustrated in the flowchart of

Figure 3.2.
Frank and Wolfe showed that a lower bound on the optimal objective function

value can be obtained at eacl iteration. This is important since true lower bounds are

required fcr use in the branch-and-bound procedure. From Figure 3.3 we see that:

PND(X*) k PND(Xl) + VPND(X 1) (X* - X1) (eqn 3.2)

By the convexity of PND(X). And furthermore:

PND(X*) k PNDýXl) + VPND(XI) (X2 - X1) (eqn 3.3)

19

SPECIFY INITIAL

FEASIBLE FLOWS
X1

COM.PUTE PND11

xl

FIDPARTIAL DERIVATIVES

LINEARIZE OBJECTIVE FUNCTION

FIND SHORTEST PATH

THROUGH NETWORK
(this defines X2)

LIN1E !EARCH FROM

X1 to X2

II

SFCATE X, A.VD F71*I

Figure 3.2 Flowchart for Infinitely Divisible Search Effort Problcm.

I 20

since X2, min;mizes the linear subproblem objective VcPND(X,) X subject to the

requircd network constraints. So

DELTA = - VPND(Xi) (X" - XI) (cqn 3.4)

shcwn in Figure 3.3 is an upper bound un how much improvement is possible if the

nonlinear procedurc is continued. The procedure was stopped when DELTA became
suflkiclntly small.

! I
P1-D1D- I - -

PD'D - - --- -- -- - ---
! "-.. , FUNCTiON)LTP'Jt) -- ~DELTA

TA.','-.-_'4T LINE• I" -I "

rL ----- J-- -
I I I

III
I I -

J I _

Xl X* X2

Faiurc 3.3 1he Lower Bound Shown Graphical!:.

The resulting program was run successfully on several example prohlemn of

various sizes including a 1I x 15 cell grid with 25 time periods. Specifics of this problem

S\viii be discussed ii. Chapter V. All cases that were considered iivolved situations in

which the target's maqs wav ioitially locazcd at a point and then allowed to spread

unimforily in all directions. This type of search is commonly referred t' as a datum

scarch with the target's ,tartinc point known as "datum".

* 2

'
Throughout the testing and evaluation of this program several key it,:ms were

observed:
* The Frank-Wolfe method resulted in fast initial convergence as evidenced by a

large drop on the probability of nondetection after just one iteration. When
close to the optimal solution, convergenme was much slower.

0 For each Frank-Wolfe iteration, the start point probabilities (PNDd) and the
lower bound probabilities at the extreme point (PLOW) followed a definite
patern as shown in Figure 3.4. 1 his observation becomes important later when
considering early termination of the lower bound calculaz.ion in the branch-and.
bound algcrithm.

0 As optiniality was approached the minimum value of the objective function
obtained from the quadratic line search between X and X2 moved closer to XV.
This seems somewhat intuitive when considering that the algorithm is
continuously stepping towards the optimal point.

• The algorithm was relatively quick; an important consideration for the branch-
and-bound problem, and suggested that larger problems could be solved for the
case of divisible search effort.

0 For the datum searches it was interesting to note that as the problem started
the search effort did not fractionate but instead moved off directly towards the
target's datum. As the problem proceeded, the search effort began to divide and
disperse once the searcher was located on top of the target.

C. SUMMARY

The divisible search effort problem was found to be solvable by the Frank-Wolfe

method which consists of the following steps: linearizing the objective function:

solving the network shortest path problem to find an extreme point; and then

conducting a line search from start point to extreme point. Each time an extreme point

is discovered, a lower bound to the solution is available through use of a Taylor first

order approximation. The divisible search algorithm was found to run quickly for

relatively large problems (run times for various problems will be given later). This was

extremely promising, for if a legitimate real world scenario can be modelled using this

method, practical implementation of this program may prove to be fruitful. Although

specific applications are not covered in this study, several possible scenarios are

presented in Chapter VI.

22

Si

Nb

Li

z
ErSILON

w --

0 2 8 8 10
NUMEDER OF Fr!N-WO-VLFE ITERATIONS

Figure 3.4 Convergence of Probabilities During Frank-Wolfe Iterations.

23

@4LwUULtVAwwUtmVt1-9MVIMAA qPNL nAln&V.xt

IV. THE INTEGER PROGRAMMING PROBLEM

A. DESCRIPTION OF THE ALGORITHM

As previously discussed, it is the integer problem for which a solution is desired.

Yet this problem is difficult to solve and grows in complexity very qifickly as the

numbcr of cells and time periods increase. If we were to consider the set of all possible

searc, h paths these might be displayed as a tree like the one shown in Figure 4.1 for a

nine cell problem. For a searcher starting in cell 1, for time period 2 he may proceed to

any cell in C, - (1, 2, 4), Rather than enumeratilg all possible paths through C,, we

would like to consider each path individually as a trial path and then systeinaticaily

discard or "prune" trial paths that are unacceptable. This may be accomplished by a

branch-and-bound algorithm like the one described by Stewart [Ref. 3: pp. 133 1.

SEAR~CHER iI I
1 2 3 i*.\4 5 6

7 a 9

TARGET

Figure 4.1 Tree Representing Possible Search Paths for a Nine Cell Problem.

A branch-and-bound algorithm compares a lower bound lor a given trial path

with the current best (ie., smallest) probability of nondetection, called PIIIEST.

24

(Initially PBEST is obtained from a user provided feasible solution.) If the lower bound

is greater than PEEST, the trial solution is "fathomed'. This occurs because the best

solution attainable with the proposed trial path is always worse than the current
solution. On the other hand, if the computed lower bound is less than PBEST, the

trial path can not be fathomed, for there may exist a subset of that trial path that will
yield a probability of nondetection smaller than the current best. In this case th-! trial
path must be further specified by stepping deeper into the tree, computing a new lower

bound, and then continuing the same procedure as discussed above.
These points are best illustrated with an example. Consider the nine cell problem

discussed above. Let the first trial path be specified as (1, 2). This represents a the set
of all po esible integer paths starting in cell 1 in time period I and proceeding to cell 2
in time period 2 (shown by the middle branch of the tree in Figure 4.1). The lower

bound PLOW for this trial path is calculated and compared with the current PBEST.
For PLOW greater than PBEST, there exist no paths of the sequence (1, 2) that
"".ill yield a solution better than PBEST. Therefore the trial path would be fathomed. If
PLOW is found to be less than PBEST there may exist a path of the form (1, 2,...)

with a probability of nondetection less than the current PBEST. We cannot fathom this
path but instead must step deeper into the tree to examine the set of all trial paths

specified by the set (1, 2, j e Cj, . . .). For each of these paths, lower bounds will beI . calculated and compared to PBEST, resulting in fathoming or further branching.
Whenever branching results in the complete specification of an integer solution, the

probability of nondetection is calculated, compared with PBEST, and the current

solution updated as necessary. After all trial paths of the form (1, 2, j 6 C2, ...) are
"considered" (ie., fathomed or completely enumerated), the algorithm steps "out" to

consider other trial paths of the form {(1, j e C1, ...). When all possible paths through
C1 are considered the algorithm is finished. With this in mind the only remaining
complication is the calculation of the lower bound for various trial solutions.

Suppose for a T.period problem a trial path is specified for first t time periods.

This leaves T - t time periods of search over which the probability of target
nondetection may be minimized. Slightly modifying Stewart's notation [Rcf. 3: p.134],
this probability may be written as the product of two terms:

Prob (nondetection by time t)

and

"Prob (nondetection in periods t to T I nondetection by time t}

25

@4I

S.

Given the integer solution thru time t, the Prob{nondetection by time t} is a constant.

Therefore in order to minimize the overall probability of nondetection, the second term

must be minimized. Or in the case of the branch-and-bound problem, a lower bound

may be obtained from this term. By allowing the search effort to fractionate from time

t + I until time T, the problem becomes an infinitely divisible problem of T - t time

periods. As previously discussed, a lower bound may be obtained via the first order

Tayloi approximation that results from the Frank-Wolfe method. Hence a lower bound

on the integer trial path is available.

Summarizing the branch-and-bound steps as discussed above: A trial path is

generated which specifies an integer solution for the first t time periods. Based on this

trial path we must update the target's probability distribution, accounting for those

first t periods of search and target transitions. Next a subroutine is called where the

search effort is allowed to fractionate for the remaining T - t periods in order to find a

lower bound, PLOW, for the trial path. Comparing this PLOW to the current PBEST,

the trial path is either fathomed or further branching is undertaken. This continues

until all possible trial paths are fathomed or completely enumerated. A flowchart

showing the basic integer algorithm is shown in Figure 4.2.

B. IMPLEMENTATION OF THE INTEGER PROGRAMMING PROCEDURE

Once the divisible search effort problem was available, the branch-and-bound

procedure ,-ould be implemented fairly easily. Like the previous program, this

procedure makes extensive use of subroutines and adjacency lists. A set of nested "do

loops" is used to control the generation of trial solutions and associated branching. For

each trial path, a modified divisible search effort program is called to find the lower

bound. As previously stated, for every call to the subroutine the time horizon and the

target probability distribution must be updated. In addition, an initial set of feasible

flows must be generated to span the reduced time horizon within the subprogram. This

initial solution is achieved as before by letting the searcher remain in the same cell for

all T - t time periods. The subprogram returns a value of PLOW which is used to

determine whether fathoming or further branching is appropriate. This procedure

continues until all possible paths are "considered".

Initially the branch-and-bound algorithm as described above was tested on a

small 4 cell, 3 time period problem where all calculations were verified by hand. The

next implementation was a 9 cell problem with 10 time periods like the one used by

Eagle [Ref. 2: pp.1113-4] in which the searcher starts in cell I and the target begins in

26

GENERATE INITIAL
FEASIBLE SOLUTIO0N

COMPUTE CURRET 8T

TRIAL PATH

CALL SUBPROGRAM

F ATHMT OW P£Tr BRIAL

SI ~CO"'rUTE °

SFigure 4.2 Flow Chart Showving Integcr Solution Procedure.

7 Y

• w iP~ iAM ,0 .,t+g .+ Ai •L YES•'.&A ": -'M•A•2E 'l+

cell 9. In this problem the Markov transition probabilities are given as follows: the

target remains in the cell he currently occupies w;th probability .4, while the remaining

probability is divided equally among all adjacent cells. For this case adjacent cells are

those that share a common side, thus diagonal movements by searcher and target are

not allowed. Eagle was able to compute optimal search paths for this problem using a
dynamic progranuming technique, yet at the cost of 19 minutes of computer processing

time.

The first attempt at this problem using the branch-and-bound technique was

conducted with a starting solution of cell 1 for all 10 time periods. Additionally, for

each call the subprogram was allowed to run until the lower bound was known to
within a user defined interval. This approach took far too much computer time. In

fact, an optimal solution was not obtained after 15 minutes of run time. Several

improvements were necessary in order to cut down this time requirement to a

reasonable one. These are listed below:

* Using Eagle's optimal paths, branching discipline was improved such that trial
paths closest to the optimal path were considered first. In this way better lower
bounds were achieved quicker resulting in more efficient fathoming and
therefore fewer trial paths to consider. Although this required knowledge of the
actual uptimal paths, improvements are still available by implementing at least
some sort of branching discipline possibly arrived at through a best guess of the
optimal path.

, Starting solutions were improved by using a best guess of the optimal path.
With a near-optimal starting solution, a better PBEST is available. This also
results in better fathoming of nonoptimal trial paths.

* The subprogram was stopped before finding the lower bound within a small
window. This was accomplished via two important changes with the result that
overall less time was spent in searching for lower bounds. Recall the trend of
converging probabilities in the subprogram as illustrated in Figure 3.4. This
same example is shown again in Figure 4.3 with a few additions. Notice how
bounds on the probability of nondetection associated with a given trial path
converge until the difference is less than a user defined value, C. Rather than
allowing this to occur, the subroutine may be stopped as soon as PLOW is
greater then the current PBEST, or as soon as PND1 is less than PBEST. First,
suppose the current PBEST is given by PBEST1 in Figure 4.3. As soon as
PLOW exceeds PBEST we know that for the trial path of consideration, the
best possible solution will always be worse than the current solution. Therefore
the trial path can be immediately fathomed. Suppose on the other hand that the
current PBEST is given by PBEST 2. It can be seen that as soon as PNDI is
less than PBEST 2 that this path cannot be fathomed (PLOW for this path will
never exceed PBEST 2). For either case, continued iteration towards a better

28

lower bound is unnecessary. The computations may be halted and branching or
fathoming should occur. These last two improvements were significant in
reducing the number of Frank-Wolfe iterations and hence the time requirements
for the integer algorithm.

0.

11 14

S• -"•PBEST2

K -- --...... P [ST1
C) 'j

-d PLOW

C I I I I I I I ,

0 2 4 6 8 10

NUMBER OF FRANK-WOLFE ITERATIONS

Figurc 4.3 Stopping the Lower Bound Calculation Early.

Outside of these improvements a few others were made to try and cut off more

time. Recall that each time the objective functicn is linearized and the shortest path

found, the resulting extreme point specifies an integer solution. If the probability of

target nondetection associated with this point is better (ie., smaller) than the current
PIHIST, this solution can be stored and PBEST updated. This provides some reduction
in the time required to get a near-optimal solution, resulting in a lower PBESTI and

therefore more efficient fathoming. Additionally, this improvement may be used to help

generate initial feasible solutions. At :he begining of the algorithm the subprogram

may be called with an uncorrected timc horizon and aliowed to run. several Frank-

Wolfc iterations. For each iteration the extreme point solution is checked and the best

one recorded. In this fashion a good starting solution is easily obtained. Even though

this procedure adds some extra time to the algorithm, this time is well spent, especially

[br problems where a near-optimal starting path is not easy to estimate.

C. SUMMARY

After implementation of the improvements and modifications the program was

allowed to run on the nine cell problem with the searcher starting in cell I and the

target starting in cell 9. Multiple optimal search paths with probabilities of

nund:'tection equal to .4219 were found after 112 seconds of computer run time. These

paths are listed in Figure 4.4.

SEARCHER

1 2 3

4 5 6
7_ _8 9

TARGET

PROBABILITY OF NONDETECTION .6444

1 2 5 a 9 6 5 8 5 5

1 2 S 6 9 8 5 65 5

1 4 5 6 9 6 5 9 5 5

1 4 5 6 9 8 5 6 5 5

Figure 4.4 Optimal Integer Paths for a Nine Cell Problem of Ten Time Periods.

These answers are somewhat different from those found by Eagle's dynamic

progranrmuing approach because of basic differences between the structures of the two

models. Eagle's dvnatnic programming model allowed for a target transition before the

first search took place; the branch-and-bound algorithm accounted for the first search

31)

and then allowed a target transition. This resulted in an extra period of search for the

dynam-ic programming method causing slightly different search paths to be found by

the two procedures. Also, the dynamic programing approach did not use an

exponential detection function within each cell but instead set the probability of

detection equal to one if the target and searcher occupied the same cell simultaneously.

Hence,. the probabilities obtained by the dynamic programming solution are lower than

those presented by this paper. Despite these differences the key item of significance is

the great reduction in computer run time for the branch and bound algorithm as

opposed to the dynamic programming technique. For this problem it was an order of

magnitude decrease. It is also interesting to note that for this seemingly small problem

there are some 400,000 possible searcher paths, of which only 3,940 were actually

considered as trial paths by the branch-and-bound algorithm.

31

V. APPLICATIONS

A. INTRODUCTION
Following successful implementation of the two algorithms, several applications

were run on problems of various sizes. Some of these cases are listed in Table I along
with amplifying data regarding computer run times and for integer solutions, the
number of trial paths considered. To provide an example of the size and scope of
solvable problems, two instances from Table 1 will be discussed in detail. For the
divisible search effort case, a 15 by 15 problem with 25 search periods is examined,
while a smaller 7 by 7 grid with 10 search periods is used to present the integer
application. Note that all problems discussed here are applications involving datum
searches of similar geometry and that all search effectiveness parameters (un,) were set
equal to I for simplicity. This is important when considering the test results as shown
below, for the use of other geometries and encounters will undoubtablely result in
significantly different run times. This will be discussed in more detail in the last section
of this chapter.

B. A DIVISIBLE SEARCH EFFORT APPLICATION
As stated above, a datum search on a 15 by 15 grid of cells with 25 time periods

was solved with the divisible search effort algorithm. This problem involves 44,376 arcs
and several hundred thousand possible searcher paths. Despite this, the algorithm ran
very efficiently and gave no indication of being anywhere near the upper limit on
solvable problem size.

Again this application like all others presented so far, involved a datum search.
But this time, instead of the target starting in a corner cell, he was initially placed at
the very center of the grid while the searcher started in cell I in the upper left hand
corner. For the target, the Markov transition matrix was chosen to allow him to
disperse uniformly in all directions. Within any given cell he stayed with a probability
of .4, with the remaining probability being distributed evenly among cells sharing a
common side. Diagonal movements by the searcher were allowed. The solutions are
illustrated best by Figures 5.1 through 5.8. Notice as the problem starts the searcher.
keeps all of his resources together as a single unit and begins to march off towards the
target's starting cell. Later in time period 6, the searcher is two diagonal squares away

32

ONHC

z a:

H N 0 0J

E- U CO
Ow

LL.u

<-4 r-

14 0

LLLn

0 Xu

-n t- 1

'--4

o '33

from datum. For the next period the optimal allocation of his search effort is for him
to divide his resources. By time period 8, he is on top of datum with his search effort
divided among three cells; but this time the division is more evenly distributled with the

largest portion centered over datum. In the next period, the searcher fractionates his

efforts even more, but curiously there is a smaller portion in the center cell and a
greater concentration in the surrounding cells. It almost looks as though the searcher

is trying to catch up to the ever-expanding probability mass of the target. The one
exception to this is the set of cells along the searcher's previous track; probably
because of the lack of undetected target mass in these cells. For the next block of time
periods, the searcher's efforts become dispersed somewhat symmetrically as shown for
period 16 in Figure 5.7, but this time the largest fraction of effort remains centered on

datum. This is not totally surprising when considering that this cell will always contain

the biggest part of undetected mass because of the target's starting position and the
Markov transition matrix as defined. We might picture the searcher perched atop the

target's mass distribution, slowly carving away at the small peak at the center of the
grid. Also note that in time period 16 the distribution of search effort is not wholly

symmetrical; the cells in the upper left section contain much smaller amounts. Again
this is because as the searc~her initially came onto datum he thoroughly sanitized his

track leaving very little target mass in these cells. Now, as time proceeds the target's
undetected mass will slowly filter back over the track. Yet this amount of mass is so

small relative to other cells that the optimal allocation of search effort does not include

much coverage of this area. The allocations of effort change more slowly as the
problem continues. As before, search effort within the area of coverage remains

concentrated in the center and more sparsely distributed near the edges. However of
interest is the fact that the total area of coverage does not change from time period 16

to time period 25. The searcher has essenitially moved to the center of datum, dispersed
his effort and remained in the same spot for the duration of the problem. In doing so

he achieved an overall probability of nondetection equal to .6 142 which may seem
surprisingly high. But recall that the target was afforded eight time periods of "escape"

before the searcher reached datum.

34

-
-

mu - m.- -m
- . Um m U U - mU U

mu U U ~ * m mm

0

0I -4
CLU

I-i

m

m m a m a m - m m m U U

m - U m * U a - a m U

a - - a U m U - m - m . . .
0

- m - am m ma mm - �
A

m - - - U m U U a U U . U U

0
C,'

a - m a a - m u . . a . . .
0

qj

am m - mm m m * mm U *
gJ

a mm a m m m m am m mm

0

mm mm m m U m m a � mm

- mm a - mU m mm m - mm

tJ

a mm a mm m m mm mm mm m

a m m m a m m m m m m m m m
0

* m - m m m m a a m a
o

m mm m mm mm mm m mm mm

- m a m m m m a m m m m m

m U � mm mm - mm m

5 36

---....

mF

mEt U -,

* * a mm m m m m U

a a m U U U - - mu

C..

m I U m m U m a . m

Si

I
* m U U - U m m w m - m m U

- a * . * - U - m * - - m U U

- U U * am. U mu mm. . U

0
- m * a m a . m U m m . � U

m a - m m U U U U mu a U U

0

- m - - a - U - - a m U a m -

.2
he

- a - - a mm mm a mm -
U

a � m U m m a m a m m m

ma a � - - m mm am mm
.� w' w
* 0 U

*
I.' 4)

a 4.)m am m a mm mm. * a - 0

0

m I m m m m a a m m m a a a m U
0

m m m m m a m m m a m � m

*1�
U

I U m m m m a m m m U m U m I-Cl)LL1

I U m m m m a m m a m a m

m I U m a m m m a m a m

3S

F
m m U U U U U - - U U U

m � U U U � U U - - - m a u U

- U U U U U - mm - . � U

0

mu m . mm. * mm m mm - U

'a

* U U U m m m m m U m m m

0
� m m U m m m m U � m - -

0

* m m U m - U - * - U m m m 0..
U

* mm. mm mm mm * *a
o � 0
� * I.-'

m mm - mm U * U m . U U U 0

* U

0
I...

* mm * * mm mm m U m
0

4:
* m m U m m m m m m * . m m

I,;

Umum m mm mm mm mm mm m

� m m U m m m m m m U m m

m . m m . m m m m m m m m m m

31)

1.0

CIS

O~SO

0

rn-rn* In n an -

rn rn rn n in .4 in r

to &n m n Wn %n %n

a--i i

rn ~ ~ 1 .rn u C! n . n . r

0 0

S'.
U n n - * * U

.. 44

N t 4 '

IIJ

-r mn c - ---

100

N, 0a a;4ý c

- 'o, a %a In.

c, r' a
- '0 '.

In a aa
a a a aO

- -S U U - - -42

-A fWAa'AWAUM~& U. 0.'0 u

C. THE INTEGER APPLICATION

A smaller problem is used to demonstrate the integer application. For this case a

datum search of a 7 by 7 grid for 10 time periods is discussed. The target, initially in

the lower right hand corner of the grid, transitions with tile exact same probabilities as

presented in the divisible search effort problem of Section B. A searcher starting in cell

I is once again permitted to move diagonally within the grid. Figure 5.9 shows part of

the solution output.

As the procedure begins, a user-input feasible path is used to calculate the initial

probability of nondetection as shown in the first line of Figure 5.9. This starting

solution is improved upon by allowing several Frank-Wolfe iterations to occur in the

divisible search effort subprogram. For each extreme point solution generated the

probability of nondetection is calculated and the best one recorded. This best solution

becomes the updated PBEST shown in line 2.

With this new starting solution the branch-and bound procedure begins. The

first trial path is (1, 1). After five Frank-Wolfe iterations (listed under the column

heading "FW" in Figure 5.9), the path i5 fathomed because the calculaced lower bound

PLOW was greater than PBEST. Fathoming of this path is significant because literally

thousands of trial paths of the form (1, 1, C1, . are immediately pruned from the

tree. Next the path (1, 2) is considered. In this case 4 Frank-Wolfe iterations occurred

until the start point probability PND1 was found to be less than PBEST. Based on this

we known that the lower bound for trial path (1, 2) will never be gre. .er than PBEST

and therefore the path will never be fathomed. Further iterations are unnecessary and

branching must occur. Now each path of the form (1, 2, C2} is considered. For the first
five cases fathoming occurs until trial path {1, 2, 101 where PND, is greater than

PBEST. We may not fathom, but must branch again. The program continues

fathoming and branching until all possible trial paths are considered. This resulted in

the generation of 945 trial paths before the procedure was completed ending with the

discovery of two optimal integer paths shown in Figure 5.10. The probability of

nondetection for both paths was .6444. Note that the two paths are symmetrical to

each other and that, like the divisible search effort application, the optimal path has

the searcher initially speeding off towards datum and then conducting a search about

that area. Again for this case, the probability of nondetection seems somewhat high,

but recall that the target has been given ample opportunity to disperse.

43

9,• . , . . ,

INITIAL PBEST= .7245 1 9 17 25 33 41 49 49 49 49UPDATED PBEST= .6573 1 9 17 25 33 41 42 48 40 41

PBEST PND1 PLOHI FN TRIAL PATH
.6573 .6655 .6593 10 1 1
.6573 .6550 .4656 3 1 2
.6573 .7118 .6747 4 1 2 2
.6573 .7400 .7020 4 1 2 1
.6573 .7130 .6599 4 1 2 3
.6573 .7117 .6745 4 1 2 8
.6573 .6655 .6593 10 1 2 9
.6573 .6550 .4656 3 1 2 10
.6573 .7118 .6747 4 1 2 10 10
.6573 .9985 .6757 1 1 2 10 2
.6573 .9985 .6757 1 1 2 10 3
.6573 .7559 .7291 3 1 2 10 4
.6573 .7400 .7020 4 1 2 10 9
.6573 .7130 .6599 e 1 2 10 11
.6573 .7117 .6745 4 1 2 10 16
.6573 .6655 .6593 10 1 2 10 17
.6573 .6550 .4656 3 1 2 10 18
.6S73 .7118 .6747 4 1 2 10 18 18
.6573 .9985 .6757 1 1 2 10 18 10
.6573 .9984 .6757 1 1 2 10 18 11
.6573 .7559 .7291 3 1 2 10 18 12
.6573 .7400 .7020 4 1 2 10 18 17
.6573 .7z59 .7291 3 1 2 10 18 19
.6573 .71H7 .6745 4 1 2 10 18 24
.65?3 .6655 .6533 10 1 2 10 18 25
.6573 .6550 .4656 3 1 2 10 18 26
.6573 .7118 .6717 4 1 2 10 18 26 26
.6573 .9974 .6755 1 1 2 10 18 26 18
.6573 .9943 .7690 1 1 2 10 18 26 19
.6573 .7559 .7291 3 1 2 10 18 26 20
.6573 .7400 .702U0 4 1 2 10 18 26 25
.657' .6391 .6579 (1 2 10 18 26 27
.6573 .7137 .67(5 4 1 2 10 18 26 32
.6573 .6657 .6539 8 1 2 10 18 26 33
.6573 .6492 .4756 3 1 2 10 18 26 34
.6573 .6369 .65'2 4 1 2 10 18 26 34 34
6573 .7537 .7259 3 1 2 10 18 26 34 26

.6573 .7372 .7111 3 1 2 10 18 26 34 27

.6573 .7287 .7091 3 1 2 10 18 26 34 28

.6573 .7135 .6733 4 1 2 10 18 26 34 33

.6573 .6751 .6650 6 1 2 10 13 26 34 35

.6573 .6755 .6642 6 1 2 10 18 26 34 40

.6573 .6514 .5781 4 1 2 10 18 26 34 41

.6573 .6738 .6632 4 1 2 10 18 26 34 41 41

.6573 .7477 .6619 2 1 2 10 18 26 36 41 33

.6573 .7001 .6737 3 1 2 10 18 26 34 41 31

.6573 .6904 .6644 3 1 2 10 18 26 34 41 35

.6573 .6978 .6678 3 1 2 10 18 26 34 41 40

.6573 .6638 6593 5 1 2 10 18 26 34 41 42

.6573 .6876 .661/ 3 1 2 10 18 26 34 41 47
.6573 .6638 .6592 5 1 2 10 18 26 34 41 48
.6573 .6737 .6618 4 1 2 10 18 26 34 41 49
.6573 .6488 .5496 3 1 2 10 18 26 34 42

Figure 5.9 Trial Paths for a 7 by 7 Grid Problem With 10 Search Periods.

44

SEARCHER

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

TARGET

PROSABILITY OF NONDETECTION = .6444

1 9 17 25 33 41 48 42 48 41

1 9 17 25 33 41 42 48 42 41

Figure 5.10 Optimal Integer Solutions for the 7 by 7 Grid With 10 Search Periods.

D. LARGER INTEGER APPLICATIONS

Using the same 7 by 7 grid as discussed in the previous section, the problem was

run for successively longer intervals of search in order to get an idea of how rapidly

computer run time increased with problem size. For each of these cases the target

started in cell 49 and the searcher started in cell 1. A summary of run times and

optimal search paths is shown in Table 2. Note that the optimal paths for each

problem are essentially the same with the searcher going directly towards datum and

then spreading out to cover the target's undetected probability mass. We can almost

detect something that resembles a systematic search, especially for the 12 time period

solution. Here it looks like the searcher is begining to expand his area of coverage by

moving outwards from datum. Unfortunately, the 13 time period problem was not

solvable within 1 hour of run time on the IBM 3033 mainframe, therefore we are

unaNe to see what happens with more search periods. Thus we are unable to comment

45

on the validity of systematic search. Run times as a function of problem size for this
49 cell grid are illustrated on the graph in Figure 5.11. We can see how rapidly the run
time increases as the number of search periods increases from I1I to 12. This probably

results more from the increase in the number of possible searcher paths than from the

increase in the number of arcs in the network.

E. SUMMARY

The overiding consideration in all of these applications is how much larger can
we go? While the divisible search effort algorithm seems to be efficient and capable of
handling very large problem sizes, the run times for the integer solution appear to grow
rapidly as problem size increases. With this in mind, a better question might be how
large do we need to go? Here the major consideration is the purpose for which the
problem is being solved. If we are interested only in learning about optimal approaches
to various search problems we may be willing to tolerate the long run times associated
with larger integer problems. Yet for employment of the procedure in real world
situations long run times are unacceptable. This may dictate the use of other
techniques for solving the integer problem. One possible method is to model the

problem using an infinite time horizon with discounting, where early detections are

more heavily weighted than later detections. With this model, iarger integer problems

might be solvable, however the choice of appropriate discount factors will be difficult.
Still, this technique is worthy of consideration.

Another consideration is the type of search problem to be solved. Thus far the

integer solutions we have looked at constitute only a specific type of datum search in
which the target starts at one corner of the grid and the searcher at the opposite
comner. What happens if instead the target begins the problem in the center of the grid?
This very problem was run using the branch-and bound procedure for 5 by 5 and 7 by
7 grids with 10 time periods of search. In each case, the algorithm did not achieve an
optimal solution after one hour of computer run time. This was surprising especially

after the "fast" run times associated with the previous 5 by 5 and 7 by 7 datum
searches. A possible explanation for this is that for some problems the relaxation on

divisiblity of search effort within the subprogram results in weak lower bounds. Recall
the 3 by 3 case with 10 time periods of search as discussed in Chapter IV. For this

problem some 3940 trial paths were generated. Yet for the 7 by 7 application of

Section 3 above only 945 trial paths were considered despite the fact that the later case

is significantly larger. Close inspection of the divisible search effort solutions to both

46

S- ,'1' °4' ro ,. o -
N ? 0 ID 0 % u L

L N cc N~ c N c

QID N a0 N N N

U).4' .)4' 4 m m .4 .4'

M e,. Mn r)mu•

m o o o

o, '-° 4 4 * 4' 4 4

) N 0 N 0 7

ýD ý4 r-4

lA
•0 F

1-4 n) 4') 4' U ')

9.1 .1 t'4 .-11. -

w ~ ~ I CA 0)U nU)

14 01-
LLC4
-~ UH

0 r er-P M. 14'r'

In 04 1. 1 M1

'I' " '0 A4

" C4
H IL

"t f
-~~ ~ ~ K.) (' 4 C

47 0 ~ U

0

Io-

z

w
LLJ

0-z

1000 2000 3000 4000

NETWORK SIZE (NUMBER OF ARCS)

Figure 5.11 Graph Displaying Run "rimes for Integer Problems.

problems show that for the 7 by 7 case the search effort does not fractionate until time
period 6, resulting in a near-integer solution. Conversely in the 3 by 3 case the search

effort is divided immediately. It appears that the divisible search effort subroutine is
better in calculating lower bounds for the 7 by 7 case than the 3 by 3 case. This
consideration may prove very important when attempting to solve other search

problems of various geometries.

,49

H
Ve. CONCLUSIONS

A. SUMMARY OF HIGHLIGHTS

We have seen successful implementation of the branch-and-bound procedure as

proposed by Professors Eagle and Yee. After many applications of this technique and
the divisible search effort subprogram to various datum searches, there are several key
items of significance worth noting:

* The divisible search procedure ran quickly and efficiently on all scenarios tested.
Additionally, the relatively short run time required to solve the 15 by 15 cell
case in Chapter V, suggested that much larger problems could be solved with
this algorithm.

0 The computer run times required to find integer solutions grew rapidly with
problem size. It appeared that simply increasing the number of time periods for
the problem had a more significant effect on run time than increasing the size of
the grid. This observation is substantiated by noting the an increase of
approximately I minute in going from a 5 by 5 grid to a 7 by 7 grid both with
10 search periods (see Table 1). Comparatively an increase of almost 3 minutes
was observed in going from a 10 time period 7 by 7 case to the same problem
with 11 thne periods. This condition may prevent the branch-and-bound
procedure from being implemented in large grid problems, for there is a
desireable relationship between grid size and solvable time horizon. Wiith a
larger problems more search periods are required in order to allow the searcher
adequate time to span the grid. Therefore, if time horizons are most limiting,
only smaller grids may be considered.

* Lower bounds calculated in the subprogram are much stronger when the
divisible search effort solution closely parallels the integer solution. This means
that fewer trial paths are considered when the lower bound is strong resulting in
faster run times. This result may prove limiting in the types of geometries that
may be solved by the branch-and bound procedure, however more testing is
required to substantiate this conclusion.
Although we would like to comment on the validity of systematic search there
are not enough test cases to do so. However, there does seem to be some kind
of systematic approach to the datum searches that were considered. Each has
the searcher speeding off towards datum and then hopping back and forth
across cells adjacent to the datum cell. In one case we did actually observe
what appeared to be a searcher expanding his area of coverage, but not enough
time periods were covered in order to make a valid conclusion.

49

64

III'

B. PROPOSED REAL WORLD APPLICATIONS
Of the two cases considered the divisible search effort algorithm seems to be the

most promising as far as real world application. Of course modifications to the

procedure would be necessan, but some possible applications include:
* Sonobouy placement by aircraft- In this case each sonobouy may be considered

as a separate searcher. For each time period the aircraft has a finite number of
resources that he must distribute over the area of uncertainty. Because of his
speed advantage over a submarine target, he may move almost
"instantaneously" in order to spread this effort.

0 Mine placement: Here again mines could be considered as "searchers*.
• Large search parties: This might be a group of men patrolling a large area as

suggested by Stewart [Ref. 3: p.1291, or perhaps a collection of a aircraft
sweeping over an area for a downed pilot.

* A single aircraft: Although this case involves a single searcher, the aircraft's
speed advantage allows him to cover more than one cell in a given time period.

As far as integer applications, if faster run times are available, this procedure

could be used for a.,y case involving a single unit as the searcher. Of course for some
applications the problem sizes as d[iscussed within this report may be adequate. Even if

it is not possible to achieve lower run times, a hybrid combination of both the divisible
and integer algorithms might be feasible. Consider a user selecting various "best guess"

integer solutions for evaluation on a console that returns the value of the probability of
nondetection for each "best guess". The divisible search algorithm might be called to

show the optimal allocation of search effort for each time period. Seeing this, the user
may generate or even modify his "best guess' path before submitting it for evaluation.

In the background of all this is the integer solution slowly churning away, eventually to
be printed out on the console. Also as Stewart noted [Ref. 3: p.135], the first full

solution generated by the branch-and-bound procedure when at the bottom of the tree

(t - T), is very close to optimality and might be suitable as a heuristic solution.

C. UNANSWERED QUESTIONS
This paper has merely scratched the surface of the complete investigation for the

integer and divisible search procedures of Professors Eagle and Yee, for there are still
many areas of interest with regard to application and implementation.

From the implementation aspect there are undoubtablely several areas for

improvement, especially concerning the line search. What is the best line search
technique for this application and how much accuracy in the line search is required in

50

order to find good lower bounds for use in the branch-and-bound procedure? Quite

possibly the Goldstein-Armijo conditions [Ref. 7: Chap.21 could be implemented to find
an acceptable stopping point for the line search. These questions have not been
thoroughly investigated, Also, there is the question of when to terminate the search for
the lower bound and again how much accuracy is enough? Additionally the branching

discipline far the integer program in this report is determined by the order in which the

cells are listed in the input file. Some better method is necessary to implement good
branching rules that may help reduce the overall run times. And finally for all
applications presented, the search efiectiveness parameter (% has essentially been
ignored. Recall that it was set equal to 1 for simplicity; the effects of varying this

parameter are still unknown.
Aside from implementation there are various scenarios yet to be considered.

What of the cases involving the search of an area where the target is initially uniformly

distributed? Or how about the search for a transiting target? And what happens if the
target is at high speed versus low speed? The possible scenarios are endless. The big

question here is just what types of problems can be solved with the branch-and-bound

procedure? We've already mentioned the effects of grid size and suitable time horizons.
Will we be able to solve a large enough problem to investigate these cases? But also

there is the concern of the strength of the lower bounds for certain geometries. All of
these things are yet to be completely understood.

"Still the most crucial question is what can we learn about optimal search paths?
Will we be able to use this branch-and-bound algorithm, or for that matter any

procedure that solves the integer problem, to help substantiate that systematic search is
the best method? Or instead could the algorithm be used to help develop heuristics for
the different classes of search problems? In order to answer these questions fully mnore

investigation is clearly warranted.

51

51

APPENDIX A
DERIVATION OF COMPUTATIONAL FORMULAS

1. CALCULATING THE PROBABILITY OF NONDETECTION

Recall from Chapter 1I that given a set of flows the probability of nondetection
could be calculated from equation A. I as follows:

T
Q "•• Pwexp- X~•(l)l)-t=2iwt x(i,e•(t),t- 1)) (eqn A.I1)

i e CW(t)

This formula is useful for demonstrating the convexity of the objective function
yet is not very practical for computational purposes because all possible target paths

must be completely enumerated. A better way to make this calculation is to exploit the

Markovian nature of the target's motion. We can do this by using a matrix to keep
track of the target probability mass within each cell. Then by post-multiplying this

matrix by a "nondetection probability matrix" and a target transition matrix, the
target's probability distribution may be updated iteratively for each time period. At the

end of T time periods, the overall probability of nondetection may be found by
summing the remaining mass among all cells. This iterative procedure is illustrated

below in more detail.
Consider a general N cell, . time period problem with the target starting in cell

N and the searcher initially in cell 1. The target's probability distribution can be given

by the 1 x N matrix L where:

E - 0 .,O, 1. (eqn A.2)

(In general let E represent any 1 x N matrix showing the target's mass distribution). In
time period 1 the searcher conducts a search. For each cell the probability of

nondetection given that the target is within the cell is found by exp{ - X(i,l)} where
X(i, 1) is the amount of search effort in cell i during time period I.

In order to calculate the target mass remaining after the search in time period 1,

each entry in r must be multiplied by its associated probability of nondetection as

52

given in above. To retain the proper shape of the resulting matrix, these probabilities
are placed along the diagonal of an N x N matrix and then pre.multiplied by f as

shown below:

[exP(X(1,1)} e0{XNl

- ,0,,.., 0, 1] (eqn A.3)
LO exp{ -" X(N, 1)ý

The result is a 1 x N matrix showing the target mass remaining in each cell following
the search in time period 1. This mass must now transition into time period 2 by post-

multiplying f by the N x N Markov transition matrix r. As before, the result is a 1 x
N matrix of the target's mass distribution within each cell, but this time at the start of

time period 2. To account for the next search, the procedure is repeated except now the
probabilities of nondetection are computed using the flows as shown in equation A.4
below.

exp(-F Oi x(i,j,l)} (eqn A.4)

ie Ci

As in time period I these probabilities can be arranged along the diagonal of an
"N x N matrix and then used to update E as follows:

V r

Se- [o0o,. ..,o0, 1],r

LO ~ exp{ - X(N,I1))

"exp(-E oil x(i,1,1)) 0

(eqn A.5)

0 exp(- Q iN x(i,N,1)}
ieCN

53

These same procedures are repeated for all T time periods to yield the finalE

matrix:

E[,O..,O1 [xP-X10) exp{ -X(N,1I)}]

i C1

exp{ - u.1 x(i,1, - 1)) 0
i GC1

* (eqn A.6)

0 exp(- 0tiN x(i,N,T - 1)}
i r=CN

Once this matrix is found, the overall probability of nondetection is calculated by

summidng all remaining target mass.

54

2. CALCULATING PARTIAL DERIVATIVES
Consider a single variable in the previous problem, x(i, J, t). We would like to

calculate the partial derivative of E with respect to this variable. Rewriting the j
nmatrix from Section I to show the x(1, t) term we have:

exp(-(,) 0

[O, O, ... ,o1] r

Sexp(X(N,I)}j

e exp(-E ai x(i,,l)} 0"

iEC1 ,

L exp(-E a iN x(i,N,1) }
6i CN

0

exp({-j au, x(i,1,T-I) 0
ieC

1

A A

0 eexpp - aiN xiiT' A)}i CN

IEC

exp{-E ai x(i,,T-1)5 0

Q . (eqn A.7)
S0O exp{ -E aiN x(i ,N,T- 1)}

i r=CN

-i55

As suggested by Brown [Ref. 1: pp.1281-2], this may be rewritten again as follows:

aexp{-E atlx(i,l,^t)} 0"
ieC 1 ,

L? I ,ý+11 S[j, + 1](eqn A.8)

LO exp-j: tiN x(i,N,"t)}
iECN

where L [,' I+ 1] is a 1 x N matrix that shall be referred to as the "reach" matrix, and

,7[L,?+ 1i is an N x N matrix referred to as the "survival" matrix. The reason for these
names will become apparent shortly. Using this matrix notation makes calculation of
the partial derivatives fairly easy, for the a and j2 matrices contain no terms that
include the variable x(i, ,) and therefore may be treated as constants. Finally the

partial derivative of P with respect to x(i, j ,tl) is calculated:

8x(tt',) R(j, t+1)exp{- ax t)}) (-u .j,) 1) (eqn A.9)

A AA
NNow R(\' At+ 1) is a real number giving the pi'obability that the target reaches cell in
time period ',+ I and S(, 1^1 + 1) is a real number representing the probability of target

survival to time T given that there was no detection in cell J for time •+ 1. Note that
because of the diagonal matrices involved, all other terms in L and i go to 0. With

this formula, partial derivatives are easily calculated for all flow ,'ariables. Additionally
it is important to note that g[j,t] may be calculated iteratively as shown:

exp(-'Fct x(i,j,t-i) 0
ie C1

R[it+ IJ= ij,tJ "r (eqn A. 10)

S0 exp(-E a y x(i,N,t - 1)}
C iECN

56

4
Inn, a.i~lt ~ AI rttr A Crt "CJ42U. JW. lt b-f n.al~tg I ~ Al.l .

Simu.iarly, survival matrices [],] may also be calculated iteratively as shown below:

[exp{ -I ail x(i,j,t) 0

.,= r C. j,t+1] (eqnA. l1)

0 exp(-X aiN x(i,N,t)}iLCN

The recursion begins with D ,T being a column vector of ones and L [j,11 being a row

vector of the target's initial distribution over the cells.

'I

57

a.a- tn ,,.!lat nlan t-., nn nna naa •,a, t~.tS . tr Jntf~ S,~ , tfW lM nlI

APPENDIX B
DIVISIBLE SEARCH EFFORT PROGRAM LISTING

1. SOME DETAILS ON PROGRAMMING METHODS
As previously mentioned the divisible search algorithm was coded in Fortran and

run in an IBM 3033 mainframe computer. The program is written to accommodate
changes in problem size very easily. This is done by the use of "Parameter" statements
to control array sizes and stopping points for iterative computations. Extensive use of
subroutines allows for efficiency as well as ease of understanding. Input is from an data
file which is necessary in order to handle the large amount of irnformation that must be
used within the algorithm such as transition probabilities, adjacent cell numbers, etc.
To help minimize the overall storage requirements of this data, adjacency lists and
entry point arrays are used extensively to represent the arcs and flows within the
network. These will not be discussed here but instead are adqeuately described by
Reference 6. A program listing is provided in Section 2, for which the parameters are
-:t up for a 25 cell problem with 10 search periods.

2. PROGRAM LISTING

PROGRAM MAIN
* PROGRAMMER: FRANK CALDWELL DATE: SEP 87 *
* PURPOSE: *
* THIS IS THE CONTROLLING PROGRAM FOR THE CONSTRAINED SEARCH *
* ALGORITHM WITH DIVISIBLE SEARCH EFFORT. IT SERVES MERELY TO CALL *
* MAJOR SUBROUTINES THAT IMPLEMENT THE PROCEDURE. *

* KEY VARIABLES: *
S* A: A MATRIX OF SEARCH EFFECTIVENESS PAP.AMETERS FOR EACH *
* ARC IN THE NETWORK. LISTED IN ADJACENCY LIST FORM. *
* ADD: A MATRIX SIMILAR TO THE ADJACENCY LIST BUT INSTEAD OF GIVING *
* THE HEAD• OF ARCS INCIDENT TO CELLS LISTED IN THE ENTRY POINT
•_ * THIS MATRIX GIVES THE TAILS OF ALL ARCS THAT FLOW INTO THE *
* CELL LISTED IN EP. *
* ADJ: A MATRIX THAT GIVES THE HEADS OF ALL ARCS IN ADJACENCY LIST *
* FORMAT. *
*DELMIN: THE USER DEFINED INTERVAL OF ACCURACY REQUIRED FOR THE *
* LOWER BOUND. THIS ALSO SPECIFIES THE STOPPING CRITERIA *
* DELTA: THE CHANGE IN PROBABILITY OF NONDETECTION PREDICTED BY THE *
* FIRST ORDER TAYLOR APPROXIMATION IN GOING FROM SOLUTION *
* X1 TO SOLUTION X2. *
* EP: THE ENTRY POINT ARRAY FOR THE ADJACENCY LISTS. *

EPLEN: A PARAMETER THAT IS USED TO SET THE DIMENSION OF THE EP ARRAY *
FRAC: A MATRIX OF DIMENSIONS NCELLS BY TMAX IN WHICH ENTRY, ** FRAC(I,T) GIVES THE FRACTION OF CELL I SEARCHED IN TIME T. *

* GRAD: A M1ATRIX OF PARTIAL DERIVATIVES WITH RESPECT TO EACH ARC *
* IN THE NETWORK. GRAD(JT) IS THE PARTIAL DERIVATIVE OF THE *
* OBJECTIVE FUNCTION WITH RESPECT TO ARC J FROM THE ADJ. LIST. *
*LENGTH: A PARAMETER USED TO SET DIMENSIONS OF ALL ADJACENY LISTS. *
*NCELLS: A PARAMETER SPECIFYING THE NUMBER OF CELLS IN THE SQUARE GRID *
* NEXT: AN ARRAY USED TO KEEP TRACK OF THE SHORTEST PATH. *

58

* PND: THE PROBABILITY OF NONDETECTION *
* PND1: THE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN *
* BY Xl (THE START POINT). *
* PND2: THE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN *
* BY X2 (THE EXTREME POINT). *
* PND3: THE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN *
* BY Xl (THE MIDPOINT IN THE QUADRATIC LINE SEARCH). *
* PND4: THE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN *
* BY X4 (THE MINIMIZING POINT FROM THE LINE SEARCH). *
* R: THE MATRIX OF DIMENSION NCELLS BY TMAX OF REACH PROBS. *
* S: THE MATRIX OF DIMENSION NCELLS BY TMAX OF SURVIVE PROBS. *
* START: THE SEARCHER'S INITIAL FEASIBLE SOLUTION *
* T: AN INTEGER REPRESENTING PROBLEM TIME. *
*TGSTRT: A MATRIX GIVING THE TARGET STARTING DISTRIBUTION ON THE GRID. *
* TGTDN: THE CURRENT TARGET DENSITY. *
*TGTDNF: THE FUTURE TARGET DENSITY AFTER ONE MARKOV TRANSITION. *
*TGTDNP: THE PAST TARGET DENSITY ONE MARKOV TRANSITION BACKWARDS. *
* THETA: THE FRACTION OF THE DISTANCE FROM Xl TO X2 THAT MINIMIZES *
* THE OBJECTIVE FUNCTION. *
* TMAX: THE TOTAL NUMBER OF SEARCH PERIODS. *
*TRANS: A MATRIX GIVING THE MARKOV TRANSITION PROBABILITIES FOR EACH *
* ARC LISTED IN ADJACENCY LIST FORMAT. *

STRIAL: A DUMMMY VARIABLE USED TO KEEP TRACK OF VOC DURING THE SHORT- *
* ~TEST PATH ROUTINE.*

* VOC: THE VALUE OF CONTINUING FOR EACH NODE ON THE SHORTEST PATH. *
* X: A SET OF ANY FEASIBLE FLOWS. (ALL FLOW VARIABLES ARE GIVEN *
* IN ADJACENCY LIST FORMAT.) *
* Xl: A SET OF FEASIBLE FLOWS ASSOCIATED WITH THE START POINT. *
* X2: A SET OF FEASIBLE FLOWS ASSOCIATED WITH THE EXTREME POINT. *
S* X3: A SET OF FEASIBLE FLOWS ASSOCIATED WITH THE MIDPOINT IN THE *

S* QUADRATIC LINE SEARCH. *
* X4: THE SET OF FEASIBLE FLOWS ASSOCIATED WITH THE MINIMIZING POINT*
* FROM THE QUADRATIC LINE SEARCH. *
* XO: AN ARRAY GIVING THE THE AMOUNT OF SEARCH EFFORT IN EACH CELL. *

* REFERENCE: *
* CON FORTRAN WRITTEN BY PROFESSOR JAMES EAGLE AT THE NAVAL PG *
* SCHOOL IN MONTEREY CALIFORNIA TO SOLVE THE DIVISIBLE PROBLEM. *
** *** * ******** **** ****,~******* **** ********* *** ********* **************

* ... DECLARE / INITIALIZE
INTEGER T1AXEPLEN
PA-AETER (NCELLS=25,TMAX=10 EPLEN=26,LENGTH=225)
INTEGER EP (EPLEN) ADJ(LENGTHS,START(TMAX),ADD(LENGTH)
REAL TRANS (LENGTH ,A(LENGTH),TGSTRT(NCELLS),XO(NCELLS)
COMMON EP,ADJ,TRANS,A,TGSTRT,XO,ADD
CALL INPUT(START,DELMIN)
CALL LOWBND(START,DELMIN)

STOP
END

SUBROUTINE BOUND(XI X2 GRAD DELTA**************************A**4**

S* PROGRAMMER: FRANK CALDWELL DATE: SEP 87 *
* PURPOSE: *
S* THIS PROGRAM COMPUTES THE DELTA FOR USE IN CALCULATING THE LOWER *
* BOUND ASSOCIATED WITH EACH FRANK-WOLFE ITERATION. THIS DELTA IS THE *
* CHANGE IN THE PROBABiLITY OF NONDETECTION ACHIEVED BY GOING FROM Xl *
* TO X2 AND IS CALCULATED BY THE FIRST ORDER TAYLOR APPROXIMATION. *

* INPUT: *
, * Xl: A SET OF FEASIBLE FLOWS ASSOCIATED WITH THE START POINT *
S* X2: A SET OF FEASIBLE FLOWS ASSOCIATED WITH THE EXTREME POINT *
* GRAD: A MATRIX OF PARTIAL DERIVATIVES WITH RESPECT TO EACH ARC *
* IN THE NETWORK. GRAD(J,T) IS THE PARTIAL DERIVATIVE OF THE *
-- * OBJECTIVE FUNCTION WITH RESPECT TO ARC J. *

59

* OUTPUT: *
* DELTA: THE CHANGE IN PROBABILITY OF NONDETECTION PREDICTED BY THE *
* FIRST ORDER TAYLOR APPROXIMATION IN GOING FROM SOLUTION *
* Xl TO SOLUTION X2. *

*E R... DECLARE / INITIALIZE
INTEGER THAX EPLEN
PARAMETER(NCELLS=25,TMAX-10,EPLENU26 LENGTHM225)
INTEGER EP(EPLEN),AJ(LENGTH) T ADD(LENGTH)
REAL XI(LENGTH TMAX) X2(LENGTH AMAX oGRAD(LENGTHTIAX),XO(NCELLS),

ITGSTRT(NCELLS) TRANS(LENGTH),A LENGTH)
COMMON EPADJTRANS`,A,TGSTRTXO ADD
DELTA=O
DO 10 T=ITMAX-1

DO 10 J=1,EP(NCELLS+1)-I
1DELTA=DELTA+GRAD(J,T)*(X2(J,T)-X(JT))10 CONTINUE

RETURN
END

SSUBROUTINE FRACTQX FRA.C

* PROGRAMMER: FRANK CALDWELL DATE: SEP 87 *
* PURPOSE: *
* THIS PROGRAM CALCULATES THE FRACTION OF CELL I SEARCHED IN TIME *
* PERIOD T. THIS FRACTION IS SIMPLY THE SUM OF OVER ALL ADJACENT CELLS *
* OF THE PRODUCT OF FLOW EFFORT AND SEARCH EFFECTIVENESS. *

* INPUT: *
* X: A SET OF FEASIBLE FLOWS *

* OUTPUT: *
* FRAC: A MATRIX OF DIMENSIONS NCELLS BY TMAX IN WHICH ENTRY, *

*FRAC(I T) GIVES THE FRACTION OF*CELL I SEARCHED IN TIME PERIOD T. *
*

S* ... DECLARATIONS
INTEGER TMAXEPLEN
PARAMETER(NCELLS=25,TMAX=1OEPLEN=26,LENGTH=225)
INTEGER EP(EPLEN) ,ADJ(LENGTH)oT,ADD(LENGTH)
REAL A(LENGTH),FRAC(NCELLS,TMAX),TRANS(LENGTH),X(LENGTH,TMAX),

1XO(NCELLS),TGSTRT(NCELLS)
COMMON EPADJ,TRANS,A,TGSTRT,XO,ADD

* ... COMPUTE FRACTION OF CELL I
* SEARCHED IN TIME PERIOD T

BY SUMMING FLOWS FROM ALL* ADJACENT CELLS
DO 20 1=1,NCELLS

FRAC(I,1)=XO(I)
DO 15 T=2,TMAX

FRAC (IT)=0
DO 10 =EP(I ,EP(I+1)-i

FRAC (I,T)=FRAlC(I, T)+A(ADD(J))*X(ADD(J),T-1)
i0 CONTINUE

15 CONTINUE
20 CONTINUE

RETURN
END

SUBROUTINE GRADF(FRACGRAD)

60

I • = h' ••• :J••• "'I •a rR :•E '••'R :• •,R't I•• '•• •!

* PROGRAMMER: FRANK CALDWELL DATE: SEP 87 *
* PURPOSE: *
* THIS PROGRAM CALCULATES THE PARTIAL DERIVATIVES OF THE OBJECTIVE *
* FUCTION WITH RESPECT TO EACH ARC IN THE NErWORK. *

* INPUT: *
* FRAC: A MATRIX GIVING THE FRACTION OF EACH CELL SEARCHED FOR EACH *
* TIME PERIOD. *
. *
* OUTPUT: *
* GRAD: A MATRIX OF PARTIAL DERIVATIVES WITH RESPECT TO EACH ARC *
* IN THE NETWORK. GRAD(JT) IS THE PARTIAL DERIVATIVE OF THE *
* OBJECTIVE FUNCTION WITH RESPECT TO ARC J. *

* ... DECLARE / INITIALIZE

INTEGER TMAX,EPLEN
PARA•ETER(NCELLS=25 TMAX1O ,EPLEN=26,LENGTH=225)
INTEGER EP(EPLEN),AbJ(LENGTH),TADD(LENGTH)
REAL A(LENGTH),R(NCELLS TMAX),S(NCELLS,TMAX),FRAC(NCELLS ,TMAX),

1GRAD(LENGTH,TMAX),TRANS(LENGTH),X(LENGTHTMAX),XO(NCELLS),
2TGSTRT(NCELLS)

COMMON EP,ADJ,TRANS,ATGSTRT,XO,ADD
* ... DETERMINE REACH AND SURVIVE
* PROBABILITIES

CALL REACH(FRAC,R)
CALL SURVIV(FRAC,S)

* ... CALCULATE PARTIAL DERIVATIVES
* FOR EACH FLOW X(.,T)

DO 10 T=1,TMAX-1
DO 10 1=1,NCELLS

DUMMY=-R(I,T+1)*EXP(-FRAC(IT+1))*S(IT+I)
DO 10 J=EP(I),EP(1+1)-I

GRAD(ADD(J),T)=DUMMY*A(ADD(J))10 CONTINUE

RETURN
END

SUBROUTINE INPUT(START DELMIN

* PROGRAMMER: FRANK CALDWELL DATE: SEP 87 *
* REFERENCE: *
* THIS PROGRAM READS IN DATA FROM AN INPUT FILE FOR USE FOR THE *
* CONSTRAINED SEARCH ALGORITHM. *

* I... DECLARE / INITIALIZE
INTEGER TMAX,EPLEN
PARAMETER (NCELLS=25,TMAX=10,EPLEN=26,LENGTH=225)INTEGER NADJ,EP(EPLEN),ADJ(LENGTH),START(TMAX),T,ADD(LENGTH)
REAL TRANS(LENGTH),A(LENGTH), T GSTRT (NCELLS),XO(NCELLS)
COMMON EP,ADJ,TRANS,A,TGSTRT ,XO,ADD

* ... READ DESIRED ACCURACY OF
* LOWBOUND, DELMIN

READ(01,*) DELMIN
* ... READ IN ADJACENT CELL NUMBERS
* IN ADJACENCY LIST FORM WITH
* ENTRY POINT ARRAY, EP(.), AND
* HEADARRAY, ADJ(.).

T=l
DO 5 I=1,NCELLS

EP(I)=T
READ(01,*) DUMMY.NADJ,(ADJ(J), J=T,T+NADJ-1)
T=T+NADJ

5 CONTINUE
EP(NCELLS+1)= T
ADJ(T)=O

* . GENERATE ADDRESS ARRAY ADD(.)
* FOR EACH CELL THE ADD ARRAY
* GIVES A LIST OF ENTRY POINT
* POSITIONS IN THE ADJACENCY
* LIST OF ALL ARCS THAT FLOW
* INrO THE CELL

L=1
DO 8 I=1,NCELLS

DO 8 K=1oLENGTH
IF(ADJ(K).EQ.I) THEN

ADD(L)=K
L=L+l

END IF
8 CONTINUE

ADD(L)=O
* ... READ IN TARGET TRANSITION
* PROBABILITIES TRANS (.) IN
* ADJACENCY LIST FORM

DO 10 I=1,NCELLS
READ(01,*) DUMMY,(TRANS(J), J=EP(I),EP(I+1)-l)

10 CONTINUE
TRANS (EP(NCELLS+1))=O

* PRINT ,TRANS(EP(NCELLS+1)-l)
* ... READ IN SEARCH EFFECTIVENESS

DO 20 11,NCELLS A(.), IN ADJACENCY LIST FORM

READ(01,*) DUMMY,(A(J), J=EP(I),EP(I+1)-I)
20 CONTINUE

A(EP(NCELLS+1))=O
* ... READ IN STARTING SOLUTION,
* START(.)

READ(01,*) (START(T), T=1,TMAX)
,
* ... READ IN INITIAL TARGET
* DISTRIBUTION, TGSTRT(.)

DO 30 I=I,NCELLS
30 READ(01,*) DUMMY,TGSTRT(I)

11 RETURN
FND

SUBROUTINE LOWBND START,DELMIN)**************************** **

* PROGRAMMERt FRANK CALDWELL DATE: SEP 87 *
* PURPOSE: *
* THIS SUBROUTINE REPRESENTS THE SUBSTANTIAL PART OF THE DIVISIBLE *
* EFFORT PROGRAM. IT CONTROLS THE ITERATIVE SEQUENCE OF THE SOLUTION *
* TECHNIQUE BY CALLING VARIOUS SUBROUTINES TO LINEARIZE THE OBJECTIVE *
* FUNCTION, FIND THE SHORTEST PATH, ETC. *

* INPUTS: *
* START: THE SEARCHER'S INITIAL FEASIBLE SOLUTION *
* DELMINt THE USER DEFINED INTERVAL OF ACCURACY REQUIRED FOR THE *
* LOWER BOUND. THIS ALSO SPECIFIES THE STOPPING CRITERIA *
* OUTPUTS: *
* SOLUTIONS TO THE DIVISIBLE SEARCH EFFORT PROBLEM. THESE ARE PRO- *
* VIDED THROUGH THE SUBROUTINE OUTPUT. *

* ... DECLARE / INITIALIZE

62

INTEGER TMAX EPLEN
PARAMETER(NULLS=25 TMAX=l0 EPLEN=26 LENGTH=225)
INTEGER EP(EPLEN) ,ADJ(LENGTH) START(TTAX) T°ADD(LENGTH)
REAL X1LENGTHTMAX ,XO(NCELLS FRAC NCELLoTMAX

ITGSTRT NCELLS), S LN1C LLS,TnmX) S,ALEENGTH)GRAd(LNGH,TMAX),
2TRANS (LENGTH),*2 LENGTHTHAX),X4 (LENGTH,TMAX)

COMMON EPADJTR.NS,ATGSTRT,XOADD

* ... CALCULATE FLOWS FOR THE
* INITIAL FEASIBLE SOLUTION

PLOW=O
DO 10 1=1,NCELLSXO(I)=O

10 CONTINUE
XO(START (1))=
INDEX=EP (START(1))
DO 12 T=1,TMAX-l

DO 11 J=l1 EP(NCELLS+l)-1

11 CONTINUE X1(JT)m0

X1(INDEX T)al
INDEX=EP(ADJ(INDEX))

12 CONTINUE
* ** CALCULATIONS OF THE LOWER BOUND *

* ... FIND PNDI, INITIAL NON-
* DETECTTION PROBABILITY

CALL PNDET(XI,FRAC,PND1)* WRITE(1I,'(lXA16,lXoF5.4)') 'INITIAL PBEST IS',PNDl
15 CALL GRADF(FRAC,GRAD)

CALL NEWP(GRAD,X2)CALL BOUND(X1 oX2,GRAD DELTA)* ... IF DELTA IS SMALL, RETURN
PLOW=PNDI+DELTA

IF(DELTA.GE.-DELMIN) THEN
CALL OUTPUT (Xl)
RETURNEND IF* ... IF DELTA IS LARGE, CONTINUE

CALL PNDET(X2.FRACPND2) 'PNDI' ,PNDI, 'PND2=' ,PND2,
1WRITE(11,(/,3(2X,A5,FS.4)) 'PLOW=I*PLOW

* ... LINE SEARCH FROM Xl TO X2, THE
* MINIMIZING POINT IS X4

CALL SEARCH(XI,PND1,X2,PND2,X4,FRAC,PND4)
* ... UPDATE PNDl AND Xl(J,T)

PNDl=PND4
WRITE(ll,'(lX,A6,F5.4)') 'PBEST*',PNDI
DO 17 T=I,TMAX-1

DO 17 JlEP(NCELLS+I)-I

17 CONTINUE X1(J,T)=X4(J,T)
GO TO 15
END

SUBROUTINE MOVEF(TGTDN TGTDNF)
S* PROGRAMMER: FRANK CALDWELL DATE: SEP 87 *
* PURPOSE: *
" * THIS SUBROUTINE CONDUCTS A MARKOV TRANSITION ONE PERIOD FORWARD IN *
* IN TIME. IT ESSENTIALLY CONDUCTS THE OPERATION OF POST-MULTIPLYING *
* THE ROW VECTOR OF TARGET PROBABILITY MASSES BY THE MARKOV TRANSITION *
* MATRIX. *

* INPUT:
TGTDN: THE CURRENT TARGET DENSITY *

63

'la

* OUTPUTt *
* TGTDNFt THE FUTURE TARGET DENSITY * ER ONE TRANSITION PERIOD *

************************** ** ***** ****************************

* ... DECLARE / INITIALIZE
INTEGER TMAX EPLEN
PARAMETER (NCLLS-25 TMAX1OEPLENu26 LENGTH=225)
INTEGER EP(EPLEN),A6J(LENTH), T.ADD(LENGTH)
REAL XO(NCELLS), TGSTRT (NCELLS o TRANS (LENGTH) ,A(LENGTH),

1TGTDN(NCELLS), TGTDNF(NCELLS)
COMMON EP,ADJoTRANSD A,TGSTRTXOADD

DO 5 1a1,NCELLS
5 TGTDNF(I)uO

DO 10 IulNCELLS
DO 10 J.EP(I)-EP(1+1)-

10 TGTDNF(ADJ(J))=TG'DNF (ADJ(J))+TGTDN(I)*TRANS(J)
RETURN
END

SUBROUTINE MOVEP (TGTDN TGTDNP)
*********** %R*0 f,*N*0*(*T*G*T*D**T************ **********
* PROGRAMMERt FRANK CALDWELL DATE: SEP 87 *
* PURPOSE: *
* THIS SUBROUTINE CONDUCTS A MARKOV TRANSITION ONE PERIOD BACKWARD *
* IN TIME. IT ESSENTIALLY CONDUCTS THE OPERATION OF POST-MULTIPLYING *
* THE ROW VECTOR OF TARGET PROBABILITY MASSES BY THE MARKOV TRANSITION *
* MATRIX FOR TRANSITION BACKWARDS IN TIME. *

* INPUT% *
* TGTDNt THE CURRENT TARGET DENSITY *

* OUTPUT: *
* TGTDNP: THE PAST TARGET DENSITY ONE TRANSITION PERIOD BACKWARDS IN *
* IN TIME. *

T... DECLARE / INITIALIZE
INTEGER TMAXo EPLEN
PARAMETER(NCELLS=25 .TMAX=1 0EPLEN*26 oLENGTHa225)
INTEGER EP(EPLEN) ADJ(LENGTH), TADD(LENGTH)
REAL XO(NCELLSN) °TGSTRT (NCELLS), TRANS (LENGTH) oA(LENGTH)o

1TGTDN'(NCELLS), TGTDNP (NCELLS)
COMMON EPADJT.RANS, A,TGSTRT, XO,ADD

DO 5 lu1,NCELLS
5 TGTDNP(I)=O

DO 10 I--.NCELLS
DO 10 JEP (I) ,EP(I+) -1

10 TGTDNP(I)-TGTDNP (I) +TGTDN (ADJ(J))*TRANS (J)
RETURN
END

SUBROUTINE NEWP(GRAD X2

* PROGRAMMERs FRANK CALDWELL DATEt SEP 87 *
* PURPOSE: *
* GIVEN THE VALUES OF GRAD(J°T), THIS SUBROUTINE LINEARIZES THE *
* OBJECTIVE FUNCTION AND THEN FIND THE SHORTEST PATH THROUGH THE *
* NETWORK VIA DYNAMIC PROGRAMMING. IT ALSO CAL7ULATES THE SET OF *

FEASIBLE FLOWS ASSOCIATED WITH THE EXTREME POINT SOLUTION, X2. *

*THIS METHOD OF SOLUTION IS KNOW1N AS THE FRANK-WOLFE PROCEDURE.
* INPUT*GRAD: A MATRIX OF PARTIAL DERIVATIVES WITH RESPECT TO EACH ARCj 64

* IN THE NETWORK. GRAD(JT) IS THE PARTIAL DERIVATIVE OF THE *
* OBJECTIVE FUNCTION WITH RESPECT TO ARC J. *

* OUTPUTt *
* x2: THE SET OF FEASIBLE FLOWS ASSOCIATED WITH THE EXTREME POINT. *
* THESE FLOWS ARE ALONG THE SHORTEST PATH THROUGH THE LINEARIZED *
* NETWORK.

* ... DECLARE/INITALIZE
INTEGER EPLEN TMAX
PARAMETER(NCELLS=25 TMAX1wO,E PLEN*26, LENGTHm225)
INTEGER EP(EPLEN),ADJ (LENGTH),NEXT (NCELLS, TMAX T ADD(LENGTH)
REAL A(LENGTH) TRANS(LENGTH) VOc (NCELLS, THAX) GRAA(LENGTH, TMAX),

IXCELL (NCELLS) X2(LENGTHOTAX) DUNMY (NCELLS) X, (NCELLS),
2TGSTRT (NcELLS)

COMMON EP,ADJoTRANSoA TGSTRTXOADD
* D... SET VOC(I,TMAX)nODO 10 lul°NCELLS

VOC(1ITHAX)-0
NEXT(MAX)O10 CONTINUE* ... CALCULATE THE VALUE OF

* CONTINUING VOC(I.T). KEEP
* TRACK OF B*ST DECIS ION WITH
* DiARRAY NEXT(IT).DO 20 T=TMAX-1, 1,-l

DO 20 I=INCELLS
VOE TVOC ADJ(EP(I)),T+1)+GRAD(EP(I),T)

DO 20 T ,EP(I ,EP(1+1)-l
TRIAL-VO (ADJ(J) °T÷)+GRAD(J,T)
IF(TRIAL.LT.VOC(I T)) THEN

VOC(I,T T) TRIAL
NEXT(I, T):J

END IF
20 CONTINUE

* ** CALCULATE NEW FLOW, X2(J,T) *
* ... SET XCELL(I) EQUAL TO START(I)
* WHERE XCELL(1) KEEPS TRACK OF

THE TOTAL SEARCH EFFORT IN
EACH CELL.DO 30 l-- NCELLSDUMMY (z) .0

XCELL (I) XO(I)
30 CONTINUE

DO 35 Tzl,TMAX-1
DO 35 JaEP(1),EP(NCELLS+1)-l

X2(J,T)-O
35 CONTINUE

* ... GENERATE X2(J.T) FROM* X2(J,T-I) AND NEXT(I,T).
DO 50 Tul,TMAX-1

DO 40 1-1 NCELLSJ=NkxT(I ,T)
X2(J,,T XCLL(I)
DUtl. (DJ(J))-DUNMY(ADJ(J))+X2(J,T)

40 CONTINUE* ... RESET XCELL(I) FOR NEXT TIME
* PERIOD.
DO 50 1-1 NCELLS

XCELL (1)30
XCELL (I)DUY(I)
DUMMY (I)=0

50 CONTINUE
RETURN
END

65

su uI E P STEXSUBROUTf *r*ýj CALDEL

PROGRAMMERt FRANK CALDWELL DATEo SEP 87 ** PURPOSEa *
* GIVEN A SET OF FLOWS, X, THIS PROGRAM CALCULATES THE PROBABILITY *
* OF TARGET NONDETECTION. *

* INPUT: *
* Xt A SET OF FEASIBLE FLOWS *

* OUTPUT: *
* PNDi THE PROBABILITY OF NONDETECTION *
* FRAC: A MATRIX GIVING THE FRACTION OF EACH CELL SEARCHED FOR EACH *
* TIME PERIOD. *

* ... INITIALIZE / DECLARE
INTEGER TMAX EPLEN
PARAMETER (NCELLSm2$, TMAX.10 EPLEN*26, LENGTH=225)
INTEGER EP(EPLEN), ADJ(LENGTH ADD(LENGTH)T
REAL XO(NCE LLS) TGSTRT(NCELL X(LENTH , FRAC (NCELLS, TMAX),

LENGTTRANS LENGTH) TGTDN NCELLS), TGTDNF (NCELLS)
COMMON EADJ,TRANS,A, TGSTRT,XOADD

* •... DETERMINE THE FRACTION OF ALL
* CELLS SEARCHED.CALL FRACT (XFRAC)
* ... ITERATIVELY CALCULATE THE

PROB. OF NONDETECTION PND.*SET THE TARGET DENSITY EQUAL
* TO THE INITIAL DISTRIBUTION

DO 10 I=1,NCELLS
10 TGTDN(I) =TGSTRT(I)

DO 20 T=1,TMAX
* DO 15 I1,NCELLS ... ACCOUNT FOR SEARCH

15 TGTDN(I)-TGTDN(I)*EXP(-FRAC(IT))* ... TRANSITION TO THE NEXT
TIME PERIOD

CALL MOVEF(TGTDN,TGTDNF)
DO 20 I=1,NCELLS

TGTDN(I)-TGTDNF(I)20 CONTINUE
PND=O* .,. COMPUTE PND BY SUMMING ALL

* REMAINING TARGET MASS
DO 30 II1,NCELLS

PND-PND÷TGTDN (I)
30 CONTINUE

RETURN
END

SUBROUTINE REACH(FRAC
* PROGRAMMER: FRANK CALDWELL DATE: SEP 87 **PURPOSE%

* THIS SUBROUTINE CALCULATES THE PROBABILITY OF REACHING CELL I IN *
TIME PERIOD T, R(IbT). NOTE THAT PROBABILITIES IN THE REACH MATRIX *
R(I,T) DO NOT ACCOUNT FOR THE SEARCH IN CELL I FOR TIME T. *

* INPUT:
* FRAC: A MATRIX GIVING THE FRACTION OF EACH CELL SEARCHED FOR EACH *
* TIME PERIOD.

* OUTPUT:
* R: THE MATRIX OF DIMENSION NCELLS BY TMAX OF REACH PROBABILITIES *

66

* ... DECLARE / INITIALIZE
1.4T OER TMAX EPLEN
1'ARAMETER(NC*LLSs2S TMAXu10oEPLEN=26 LENGTHa22S)I INTEGER EP(EPLEN) AJ (LENGTH T ADD (ENQTH)
REAL FRAC(NCELLS tHAN) THSTTWNELLS)R RNCELLS,THAX),TRANS(LlNGTH)

4,, A(LENGTH) XO(NCiLLS),TGTDN(NCELLS)TGTDNF(NCELLS)
j q• COMMON EPkDJTRANS, ATGSTRT XO, Abb

... SET R(I,1) EQUAL TO THE
INITIAL TARGET DISTRIBUTION

DO 5 IulNCELLSR(I,I)-TGSTRT(T)
5 CONTI, U G..I COMPUTE R ITERATIVELY

DO 20 T*lTMAX-1
DO 10 IlNCELLS

TGTDN(I)a R(IT)*EXP(-l*FRAC(IT))
10 CONTINUE

CALL MOVE1(TGTDN.TGTDNF)
DO 20 II,NuCELLS

20 CONTINUE R(IT+I)OTGTDNF(I)
"RETURN
END

SUBROUTINE SEARCH(XI PNDI X2 PND2 X4 FRAC PND4

S* PROGRAMMER: FRANK CALDWELL DATE% SEP 87 *p * PURPOSEt *S* THIS PROGRAM CONDUCTS A QUADRATIC LINE SEARCH ALONG THE LINE FROM *
* START POINT X1 TO EXTREME POINT X2 FOR THE POINT THAT MINIMIZES THE *
* PROBABILITY OF TARGET NONDETECTION. THIS MINIMIZING POINT IS THEN *
* USED AS THE START POINT FOR THE NEXT FRANK-WOLFE ITERATION. *

* INPUTs *
"* XIz A SET OF FEASIBLE FLOWS ASSOCIATED WITH THE START POINT *

* X2: A SET OF FEASIBLE FLOWS ASSOCIATED WITH THE EXTREME POINT *
* PND1: THE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN *
S* BYXi. *
* PND2s THE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN *
S* BY X2. *

* OUTPUT. *
* x4i THE SET OF FEASIBLE FLOWS ASSOCIATED WITH THE MINIMIZING POINT *
* FROM THE QUADRATIC LINE SEARCH. *
* FRAC: THE MATRIX SHOWING THE FRACTION OF CELL I SEARCHED DURING *
* TIME PERIOD T FOR THE SET OF FLOWS GIVEN BY X4. *
* PND4t THE PROBABILITY OF NONDETECTION FOR FLOWS GIVEN BY X4. *

... DECLARE / INITIALIZE
INTEGER TMAXEPLEN
PARAMETER (NCELLSm2S,TMAX1O EPLEN=26,LENGTH=225)
INTEGER E (EPLEN),ADJ LENGTH ,T,ADD(LENGTH ,COUNT
REAL X1(LENGTHTMAX),(LENGTH,TMAX) XO(NCELLS) ,X3(LENGTHTMAX),

1X4(LENGTH TMAX),TGSTRT(NCELLS)oTRANS(LENGTH),A LENGTH),
2FRAC(NCELIS TMAX)

COMMON EPNAbJ,TRANSoAoTGSTRToX0oADD
WRITE(11,*)'LINE SEARCH'COUNT=1
* * ... GENERATE X3 = .5*(Xl+X2)

5 DO 10 T=1oTMAX-1
DO 10 J=1,EP(NCELLS+1)-,

10 CONTINUE X3(JT)=.5*XI(J,T)+.S*X2(JT)
CALL PNDET(X3,FRACPND3)

67

* . ~.GENERATE THETA
THETA= .5ýý(-. 75*PND1+PND3-...25*PND2) /(* *PND1+PND3-. *PN
IF (THETA.GE2.0)o THETA=1.O
IF (THETA..LE.-.001) THETA=.OO1

* ... GENERATE X4
DO 20 T=1TMAX-1

DO 20 J=1,EP(NCELLS+1)-l
X4(J,T)=THiETA*X2(J,T)+(1-THETA)*X1(J,T)

20 CONTINUE
CALL PNDET(X4 ,FRAC,PND4)
WRITE(11,1(3(2X,A5,FS.4),2X,A6,FS.4)')'PND1=',PND1, 'PND2=' ,PND2,
1 'PD4=',PND4,'THETA6 THETA

* ... CHECK TO NARROW INTERVAL

IF((THETA.LT..l.OR.THETA.GT..9)..AND.COUNT.LT.3) THEN
COUNT=COUNT+l
IF(THETA.LT..S) THEN

IF(PND4.LE.PND3) THEN
PND2=PND3
DO 40 T=1,THAX-1

DO 40 1=1,NCELLS
Do 40 J=EP(I) ,EP (1+1)-i

40 CONTINUE 2JT=3Jq
ELSE

PND1=PND4
DO 50 T=1,THAX-1

DO 50 I=1,NCELLS
DO 50 J=EP(I),EPV (1+)-i

Xl(J,T)=X4(J ,T
50 CONTINUE

END IF
ELSE

IF(PND4.LE.PND3) THEN
PND1=PND3
DO 60 T=1,TMAX-1

Do 60 I=1,NCELLS
Do 60 J=EP(I) ,EP(I+1).i,.

60 CONTINUE lJT=3,)
ELSE

PND2=PND4
DO 70 T=1,THAX-1

Do 70 I=1,NCELLS
DO 70 J=EP(I),EP(I+1)-1

70 CONTINUE X2(J,T)=X4(J,T)
END IF

END IF
GO TO 5

END IF
RETURN
END

SUBROUTINEsUvVFCS

* PROGRAMMER: FRANK CALDWELL DATE: SEP 87*
PURPOSE:

* THIS PROGRAM CALCULATES THE PROBABILITY OF SURVIVING TO TIME PERIOD*
THAX GIVEN THAT THE TARGET IS NONDETECTED IN CELL I BY TIME T.

INPUT:
* FRAC: A MATRIX GIVING THE FRACTION OF EACH CELL SEARCHED FOR EACH*
* ~TIME PERIOD.*

*OUTPUT:%

68

* S: THE MATRIX OF DIMENSION NCELLS BY TMAX OF SURVIVE PROBABILITIES *

* . .. DECLARATIONS
INTEGER TMAX EPLEN
PARAMETER(NCtLLS=25,TMAX=10,EPLEN=26,LENGTH=225)
INTEGER EP(EPLEN),ADJ(LENGTH),T,ADD(LENGTH)
REAL FRAC(NCELLS,TMAX),S(NCELLS TMAX),TRANS(LENGTH),A(LENGTH),

1TGSTRT(NCELLS),XO(NCELLS),TGTDN(NCELLS),TGTDNP(NCELLS)
COMMON EP,ADJ,TRANS,A,TGSTRT,XO,ADD

* ... SET S(I,TMAX) = 1 FOR ALL I.
DO 5 I=1,NCELLS

S(I,THAX)=5 CONTINUE* ... ITERATIVELY CALCULATE S(I,T).
DO 20 T=TMAX,2,-1

DO 10 I=,NCELLS
TGTDNkI)=S(I,T)*EXP(-FRAC(I,T))

10 CONTINUE
CALL MOVEP(TGTDN,TGTDNP)
DO 20 I=1,NCELLS

2S(I,T-1)=TGTDNP(I)

RETURN
END

SUBROUTINE OUTPUT(X4*************************** ***

* PROGRAMMER: FRANK CALDWELL DATE: SEP 87 *
* PURPOSE: *
* THIS PROGRAM PRINTS THE OPTIMAL SOLUTION FOR THE DIVISIBLE SEARCH *
* EFFORT PROBLEM. OUTPUT IS PROVIDED IN THE FORM OF MATRICES DEPICT- *
* ING THE GRID OF CELLS. THE FIRST SET OF MATRICES GIVES THE SEARCH *
* EFFORT IN EACH CELL FOR ALL TIME PERIODS. THE SECOND SET GIVES THE *
* REACH PROBABILITIES FOR EACH CELL FOR ALL TIME PERIODS. THESE TWO *
* OUTPUTS ARE PROVIDED IN ORDER TO GIVE A REPRESENTATION OF THE TARGET *
* AND SEARCHER LOCATIONS THROUGHOUT THE PROBLEM. *

* INPUT: *
* X: THE SET OF OPTIMAL FLOWS FOR THE PROBLEM *

* OUTPUT:
* OUTPUT IS TO A FILE, THERE ARE NO VARIABLES CALCULATED BY THIS *
* PROGRAM FOR USE IN OTHER SUBROUTINES. *

* ... DECLARE / INITIALIZE

INTEGER EPLEN,TMAX
PARAmETER (NCELLS=25,TMAX=L0 EPLEN=26,LENGTH=225)
INTEGER ADJ(LENGTH),EP(EPLEN5,ADD(LENGTH),T
REAL A(LENGTH),TRANS(LENGTH) ,XO(NCELLS),TGSTRT(NCELLS),

IXCELL(NCELLS),X4(LENGTH,TMAX),FPAC (NCELLS,TMAX),R(NCELLS,TMAX)
COMMON EP,ADJ,TRANS,A,TGSTRT,XO,ADD

* ... DETERMINE REACH AND FRAC
CALL FRACT (X4,FRAC)CALL REACH(FRAC,R)CH... INITIALIZE XCELL(.), THIS

KEEPS TRACK OF THE FLOW
* EFFORT IN EACH CELL

DO 10 1=1 NCELLS
XCELL(I)=XO(I)

10 CONTINUEN= 5N ... PRINT-OUT SEARCH EFFORT

WRITE(11,'(A1,T1O,A13)') '1','SEARCH EFFORT'

69

WRITE(l1 100) 'TIME PERIOD' ,
DO 12 K~i,N
WRITE,(11,110) (XCELL(I), I=1+(K-1)*N,K*N)

12 CONTINUE
DO 30 T=1,TMAX-1

DO 15 1=1,NCELLS
XCELL(I)=0

15 CONTINUE
DO 20 I=1 NCELLS

DO 1o J=EP(I),EP(I+1) 1
20 COTINUE XCELL(ADJ (J))XýCELL(ADJ(J))+X4(J,T)

WRITE(11,100) 'TIME PERIOD' ,T+1
DO 22 K=1,N

22 COTINE1110 XELII1K1*N*
30 CONTINUE
30CNIU ... PRINT-OUT REACH PROBABILITIES

WRITE(11,' (A1,T1O,A19)1) '11','REACH PROBABILITIES'
DO 40 T1l TMAX

WRITE(11,100) 'TIME PERIOD' ,T
DO 40 K=1,N

40 CONTINUE

100 FORMAT (T1O,A11.1X 12)
110 FORMAT (15(2X,F5.3S)

RETURN
END

70

APPENDIX C
BRANCH-AND-BOUND PROGRAM LISTING

1. SOME DETAILS ON PROGRAMMING METHODS
The branch-and-bound algorithm was coded in Fortran and run on the IBM

3033 computer just as the divisible search algorithm was. Because this procedure
contains a modified version of the divisible program, all the comments written at the

begining of Appendix B still apply. Within the branch-and-bound main program the

trial paths are generated by the use of nested do loops the structure of' which is very

simple. Modifications to the divisible search effort program include:
* Updating the target's mass distribution for transitions and searches as spec;fied

by trial paths.
* Updating the time horizon to T - t periods for - trial path of length t.

Othervise the divisile search program is essentially unchanged.

2. PROGRAM LISTING
PROGRAM MAIN

* FRANK CALDWELL *
* PURPOSE:
* THIS IS THE CONTROLLING PROGRAM FOR THE CONSTRAINED SEARCH

TRIAL INTEGER PATHS AND THEN CALLING THE SUBROUTINE LOWBND TO OBTAIN *
* A LOWER BOUND ON THE PROBABILITY OF NON-DETECTION FOR THAT TRIAL
* PATH. *

* KEY VARIABLES:
* A: A MATRIX OF SEARCH EFFECTIVENESS PARAMETERS FOR EACH *
* ARC IN THE NETWORK. LISTED IN ADJACENCY LIST FORM. *
* ADD: A MATRIX SIMILAR TO THE ADJACENCY LIST, ADJ, BUT INSTEAD *
* OF GIVING THE HEADS OF ARCS INCIDENT TO CELLS LISTED IN THE *
* ENTRY POINT ARRAY, EP, THIS MATRIX GIVES THE TAILS OF ALL *
* ARCS THAT FLOW INTO THE CELL LISTED IN EP. *
* ADJ: A MATRIX THAT GIVES THE HEADS OF ALL ARCS IN ADJACENCY LIST *
* FORMAT. *
*DELMIN: THE USER DEFINED INTERVAL OF ACCURACY REQUIRED FOR THE *
S* LOWER BOUND. THIS ALSO SPECIFIES THE STOPPING CRITERIA *
* DELTA: THE CHANGE IN PROBABILITY OF NONDETECTION PREDICTED BY THE *
* FIRST ORDER TAYLOR APPROXIMATION IN GOING FROM SOLUTION *
* X1 TO SOLUTION X2. *

EP: THE ENTRY POINT ARRAY FOR THE ADJACENCY LISTS.
EPLEN: A PAPAMETER THAT IS USED TO SET T7{E DIMENSION OF THE EP ARRAY

FRAC: A MATRIX OF DIMENSIONS NCELLS BY TMAX IN WHICH ENTRY,
FRAC(I,T) GIVES THE FRACTION OF CELL I SEARCHED IN TIME T. **GRAD: k MATRIX OF PARTIAL DERIVATIVES WITH RESPECT TO EACH ARC
IN THE NETWORK. GRAD(J,T) IS THE PARTIAL DERIVA'IIVE OF THE *
OBJECTIVE FUNCTION WITH RESPECT TO ARC 3 FROM THE ADJ. LIST. *

IT: THE DEPTH OF THE TRIAL PATH SPECIFIED AS A NUMBER OF PERIODS. *
ITMAX: THE ADJUSTED TIME HORIZON FOR THE LOWBND SUBROUTINE. **LENGTH: A PARAMETER USED TO SET DIMENSIONS OF ALL ADJACENY LISTS. **NCELLS: A PARAMETER SPECIFYING THE NUMBER OF CELLS IN THE SQUARE GRID *

NEXT: AN ARRAY USED TO KEEP TRACK OF THE SHORTEST PATH. *
PND: THE PROBABILITY OF NONDETECTION *

71

* PNDl: THE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN *
* BY Xl (THE START POINT). *
* PND2: THE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN *
* BY X2 (THE EXTREME POINT). *
* PND3: THE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN *
* BY Xl (THE MIDPOINT IN THE QUADRATIC LINE SEARCH).

PND4: THE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN *
* BY X4 (THE MINIMIZING POINT FROM THE LINE SEARCH). *
* R: THE MATRIX OF DIMENSION NCELLS BY TMAX OF AEACH PROBS. *
* S: THE MATRIX OF DIMENSION NCELLS BY TMAX OF SURVIVE PROBS. *
* START: THE SEARCHER'S INITIAL FEASIBLE SOLUTION *
*TGMASS: THE UPDATED TARGET MASS FOR TIME IT. ACCOUNTS FOR SEARCHES *
* AND TRANSITIONS UP TO TIME IT. *
*TGSTRT: A MATRIX GIVING THE TARGET STARTING DISTRIBUTION ON THE GRID. *
* TGTDN: THE CURRENT TARGET DENSITY. *
*TGTDNF: THE FUTURE TARGET DENSITY AFTER ONE MARKOV TRANSITION. *
*TGTDNP: THE PAST TARGET DENSITY ONE MARKOV TRANSITION BACKWARDS. *

THETA: THE FRACTION OF THE DISTANCE FROM X1 TO X2 THAT MINIMIZES *
* THE OBJECTIVE FUNCTION. *
* TMAX: THE TOTAL NUMBER OF SEARCH PERIODS. *
*TRANS: A MATRIX GIVING THE MARKOV TRANSITION PROBABILITIES FOR EACH *
* ARC LISTED IN ADJACENCY LIST FORMAT. *
* TRIAL; A DUM~NY VARIABLE USED TO KEEP TRACK OF VOC DURING THE SHORT- *

* ~TEST PATH ROUTINE.*
* VOC: THE VALUE OF CONTINUING FOR EACH NODE ON THE SHORTEST PATH. *
.* X: A SET OF ANY FEASIBLE FLOWS. (ALL FLOW VARIABLES ARE GIVEN *
* IN ADJACENCY LIST FORMAT.) *
•* Xl: A SET OF FEASIBLE FLOWS ASSOCIATED WITH THE START POINT. *
.* X2: A SET OF FEASIBLE FLOWS ASSOCIATED WITH THE EXTREME POINT. *
* X3: A SET OF FEASIBLE FLOWS ASSOCIATED WITH THE MIDPOINT IN THE *
* QUADRATIC LINE SEARCH.

X4: RHE SET OF FEASIBLE FLOWS ASSOCIATED WITH THE MINIMIZING POINT*
*• FROM THE QUADRATIC LINE SEARCH. *
* OX: AN ARRAY GIVING THE THE AMOUNT OF SEARCH EFFORT IN EACH CELL. *

* REFERENCE: *
* THE FORTRAN PROGRAM BB5x5 WRITTEN BY PROFESSOR JAMES EAGLE AT THE *
* NAVAL POSTGRADUATE SCHOOL IN MONTEREY, CALIFORNIA. *

... DECLARE / INITIALIZE
INTEGER TMAX,EPLEN
PARAMETER (NCELLS=25,TMAX=10 EPLEN=26,LENGTH=200)
INTEGER EP (EPLEN) ADJ(LENGTH),IPATH TMAX) ADD(LENGTH) BB(TMAX)
REAL TRANS(LENGTH),A(LENGTH),TGSTRT(NCELL S),XO(NCELLSJ,

ITGMASS(NCELLS)
COMMON EP,ADJ,TRANS,A,XO,ADD,ITMA.XB3

* ... INPUT DATA
CALL INP*1TT(IPATH,TGSTRT,DELMIN)

... CALCULATE INITIAL PBEST GIVEN
STARTING INTEGER PATH, IPATH

DO)0 T=1,TMAXBBJT)=IPATH(T)
10 CONTINUE

CALL PNDETI(TGSTRT,TMAX+1,TGMASS)
PBEST=O
DO 20 1=1,NCELLS

PBEST=PBEST+TGMASS(I)
20 CONTINUE

WRITE(06,'(iXA14,1XF5.4,1O(2X,12))' 'INITIAL PBEST=',PBEST,
1 W(BB(T), T=1,TMAX)

... GENERATE A BEST SOLUTION
IT=I
CALL LOWBND(DELMIN,TGSTRT,IT,PLOW,PBEST,IPATH)
DO 30 T=1,TMAX

BB(T)=IPATH(T)
CONTINUE
WRITE(06,'(IX,A14,1X,F5.4,10(2X,I2))' INITIAL PBEST=', PEST,

1 (BB(T), T=1,TMAX)

* 72

*******************BRANCH AND BOUND
*... INITIALIZE

IT1l
NTRIAL=O
PLOW=O

* BB(1)=IPATH(l) ... FORM TRIAL PATH BB(.) AND
* FIND THE LOWER BOUND PLOW BY
* CALLING LOWBND. IF PLOW IS
* LESS THAN PSEST THE PATH IS
* FATHOMED. OTHERWISE CONTINUE

DO 200 J1=EP(BB(l)),EP(BB(1)+l)-1 F ONETLVL
IT=2
BB(IT)=ADJ(Ji)
NTRIAL=NTRIAL+l
CALL LOWBND (DELMIN ,TGSTRT, IT,PLOWPEEST, IPATH)
IF (PLOW. GE. PEEST) THEN

GO TO 200
END IF

DO 201 J2=EP(BB(2)),EP(BB(2)+l)-l
IT=3
BB(IT)=ADJ (J2)
NTRIAL=NTR IAL+l
CALL LOWBND (DELMIN,TGSTRT,IT,PLOW,PBEST, IPATH)
IF(PLOW.GE.PBEST) THEN

GO TO 201
END IF

DO 202 J3=EP(BB(3)),EP(BB(3)+l)-1
IT=4
BB(IT =ADJ(J3)

CALL LOWEND (DELMIN,TGSTRT, IT,PLOW,PBEST, IPATH)
IF(PLOW.GE. PBEST) THEN

* GO TO 202
END IF

DO 203 J4=EP(BB(4)),EP(BB(4)+1)-l
BB(T 5 AJA
NTRIAR=NTRIAL+1
CALL LOWBND (DELNIN,TGSTRT, IT,PLOW,PBEST, IPATH)
IF(PLOW.GE PBEST) THEN

GO TO 203
* END IF

DO 204 J5=EP(BB(5)),EP(BB(5)+l)-l
IT=6
BB(IT)=ADJ(J5)I NTRIIL=NTRIAL4-1
CALL LOWBND(DELMINS,TGSTRT,IT, PLOW,PBEST, IPATH)
IF(PLOW.GE.PBEST) THEN

END IF GO TO 204

DO 205 J6aEP(BB(6)),EP(BB(6)+l)-l
IT=7
BB(IT):ADJ J6)

* ~CALL LOWBtTD(DELMIN,TGSTRT,IT ,PLOW, PSEST, IPATH)
IF(PLOWG.. ?PBEST) THEN

GO TO 205
END IF

DO 206 J7=EP(BB(7)),EP(BB(7)+l)-l
IT=8

73

BBJITJRADJIJ7)NT IA zNTR AL+l

CALL LOWBND(DELMIN±TGSTRTIT,PLOW,PBEST,IPATH)
IF(PLOW.GE.PBEST) THEN

GO TO 206
END IF

DO 207 J8=EP(BB(B)),EP(BB(8)+÷)-l
IT=9BB (IT)=ADJ(J8)NTRIAL=NTRIAL+J

CALL LOWBND(DELMIN TGSTRT,IT,PLOW,PBEST,IPATH)
IF(PLOW.GE.PBEST) +HEN

GO TO 207
END IF

DO 208 J9=EP(BB(9)),EP(BB(9)+÷)-lIT=t0
BB(IT):ADJ(J9)
NTRIAL=NTRIAL+l* ... FOR TIME TMAX BB WILL SPECIFY

* A COMPLETE INTEGER PATH,
* THEREFORE CALL PNDETI INSTEAD
* OF LOWBND TO GET EXACT PND.

CALL PNDETI(TGSTRT,TMAX+1,TGMASS)
P=0
DO 120 I=1,NCELLS-

P=P+TGMASS(I)
120 CONTINUE* ... IF P IS LESS THAN QPEST a• IS

* A BETTER SOLUTION. UPDATE
* PBEST AND IPATH

IF(P.LE.PBEST) THEN
DO 100 T=1,TMAX

IPATH(T):BB(T)
100 CONTINUE

WRITE(05,'(A6,FS.4,10(2X,I2))')'PBEST-',PBEST,
1 PBESIPATH(T T=1,TTAX)

END IF
208 CONTINUE

207 CONTINUE
206 CONTINUE
205 CONTINUE
204 CONTINUE
203 CONTINUE
202 CONTINUE
201 CONTINUE
200 CONTINUE

* ... OUTPUT RESULTS
WRITE(06,'(lX,A20,1X,14)') 'TOTAL TRIAL PATHS = ',NTRIAL
STOP
END

SUBROUTINE BOUND(X1 X2 GRAD DELTA**************************A**N****S***** ******************************** RORAM:ER FRANK CALD WELL DATE: SEP 87 *
* PURPOSE: *
* THIS PROGRAM COMPUTES THE DELTA FOR USE IN CALCULATING THE LOWER *
* BOUND ASSOCIATED WITH EACH FRANK-WOLFE ITERATION. THIS DELTA IS THE *
* CHANGE IN THE PROBABILITY OF NONDETECTION ACHIEVED BY GOING FROM Xl *
* TO X2 AND IS CALCULATED BY THE FIRST ORDER TAYLOR APPROXIMATION. *

* INPUT: *
* Xl: A SET OF FEASIBLE FLOWS ASSOCIATED WITH THE START POINT *
* X2: A SET OF FEASIBLE FLOWS ASSOCIATED WITH THE EXTREME POINT *

74

S* GRAD: A MATRIX OF PARTIAL DERIVATIVES WITH RESPECT TO EACH ARC *
* IN THE NETWORK. GRAD(J,T) IS THE PARTIAL DERIVATIVE OF THE *
* OBJECTIVE FUNCTION WITH RESPECT TO ARC J. *
* OUTPUT: *
* DELTA: THE CHANGE IN PROBABILITY OF NONDETECTION PREDICTED BY THE *
* FIRST ORDER TAYLOR APPROXIMATION IN GOING FROM SOLUTION *
* Xl TO SOLUTION X2. *

... DECLARE / INITIALIZE
INTEGER TMAX,EPLEN
PARAMETER(NCELLS=25,TMAX1I0,EPLENm26, LENGTH=200)
;NTEGER EP(EPLEN),ADJ (LENGTH),T,ADD(LENGTH),BB (TMAX)
REAL XI(LENGTH,TMAX),X2(LENGTH,TMAX),GRAD(LENGTH,TMAX),XO(NCELLS),

ITRANS(LENGTH),A(LENGTH)
COMMON EP,ADJ,TRANS,A,X0,ADD,ITMAX,BB
DELTA=O.O
DO 10 T=1,ITMAX-1

DO 10 J=1,EP(NCELLS+1)-l
DELTA=DELTA+GRAD(J,T)*(X2(J,T)-Xl(J,T))10 CONTINUE

RETURN
END

SUBROUTINE FRACT(MRAC

* PROGRAMMER: FRANK CALDWELL DATE: SEP 7*
* PURPOSE:
* THIS PROGRAM CALCULATES THE FRACTION OF CELL I SEARCHED IN TIME

PERIOD T. THIS FRACTION IS SIMPLY THE SUM OF OVER ALL ADJACENT CELLS *
* OF THE PRODUCT OF FLOW EFFORT AND SEARCH EFFECTIVENESS. *

* INPUT: *
* X: A SET OF FEASIBLE FLOWS *

* OUTPUT: *
* FRAC: A MATRIX OF DIMENSIONS NCELLS BY TMAX IN WHICH ENTRY, *
*FRACJT IE THE FRACTION OF CELL I SEARCHED IN TIME PERIOD T.

* ... DECLARATIONS
INTEGER TMAX,EPLEN
PARANETER(NCELLS=25,TMAX=10,EPLEN=26,LENGTH=200)
INTEGER EP(EPLEN),ADJ(LENGTH),T ADD(LENGTH),BB(TMAX)
REAL A(LENGTH),FRAC(NCELLS,TMAX5,TRANS(LENGTH),X(LENGTH,TMAX),

IXO(NCELLS),TGMASS(NCELLS)
COMMON EP,ADJ,TRANS,A,XO,ADD,ITMAX,BB

* ... COMPUTE FRACTION OF CELL I* SEARCHED IN TIME PERIOD T
DO 10 I=1,NCELLS

* ... ASSUME SEARCHER'S STARTING
* CELL IS COMPLETELY SEARCHEDFRAC(I) XO(I)

DO 10 T=2,ITMAX
* ... FOR OTHER TIME PERIODS SUM
* TOTAL FLOW INTO CELL I

FRAC (I,T)=O
DO 10 J=EP(I),EP(1+1)-i

FRAC (I,T)mFRAC(I,T)+A(ADD(J))*X(ADD(J),T-1)
10 CONTINUE

RETURN
END

**

SUBROUTINE GRAkDF(TGMASS FRAC GRAD~PROGRAMMER: FRANK CALDWELL DATE: SEP 87 *

75

* PURPOSE: *
* THIS PROGRAM CALCULATES THE PARTIAL DERIVATIVES OF THE OBJECTIVE *
* FUCTION WITH RESPECT TO EACH ARC IN THE NETWORK. *

* INPUT: *
* TIMASS: THE UPDATED TARGET DISTRIBUTION FOR TIME IT. THIS ACCOUNTS *
* FOR ALL SEARCHES AND TRANSITIONS UP TO AND INCLUDING IT. *
* FP.C: A MATRIX GIVING THE FRACTION OF EACH CELL SEARCHED FOR EACH *
* TIME PERIOD. *

* OUTPUT: *
* GRAD: A MATRIX OF PARTIAL DERIVATIVES WITH RESPECT TO EACH ARC *
* IN THE NETWORK. GRAD(J,T) IS THE PARTIAL DERIVATIVE OF THE
* OBJECTIVE FUNCTION WITH RESPECT TO ARC J. *

* ... DECLARE / INITIALIZE

INTEGER TMAX,EPLEN
PARAMETER(NCELLS=25,TMAX=10,EPLEN=26,LENGTH=200)
INTEGER EP(EPLEN),ADJ(LENGTH) ,T ADD(LENGTH) BB(TMAX)
REAL A(LENGTH),R(NCELLS THAX) oS(NCELLSTHAX),FRAC(NCELLSTMAX),

IGRAD(LENGTH,TMAX),TRANS(LENGTH),X(LENGTHTMAX),XO(NCELLS),
2TGMASS(NCELLS)

COMMON EPADJ,TRANS,A,XO,ADD,ITMAXBB
* ... CALL REACH,SURVIV

CALL REACH(TGMASS,FRAC,R)CALL SURVIV (FRAC,S)
CL ... CALCULATE PARTIAL DERIVATIVES
O 1FOR EACH FLOW X(.,T)

DO 10 T=I,ITMAX-1
DO 10 I=1,NCELLS

DUMMY=-R(IT+1)*EXP(-l*FRAC(I,T+1))*S(I,T+l)
DO 10 J=EP (I)?,EP(I+1)-I

GRAD (ADD(J), T)=DUMMY*A(ADD(J))10 CONTINUE
RETURN
END

SUBROUTINE INPUT(IPATH TGSTRT DELMIN
* PROGRAMMER: FRANK CALDWELL DATE: SEP 87 *
* PURPOSE: *
* THIS PROGRAM READS IN DATA FROM AN INPUT FILE FOR USE FOR THE *
* CONSTRAINED SEARCH ALGORITHM. *

* ... DECLARE / INITIALIZE
INTEGER TMAX,EPLEN
PARAMETER (NCELLS=25,TMAX=10,EPLEN=26,LENGTH=200)
INTEGER NADJ,EP(EPLEN),ADJ(LENGTH),IPATH(TMAX),T,ADD(LENGTH),

1BB(TMAX)
REAL TRANS(LENGTH),A(LENGTH) ,TGSTRT(NCELLS),XO(NCELLS)
COMMON EP,ADJ,TRANS,AXO,ADDITMAXBB

* ... READ IN DELMIN, THE DESIRED
* ACCURACY OF THE LOWER BOUND

READ(O1,*) DELMIN
* ... READ IN ADJACENT CELL NUMBERS
* IN ADJACENCY LIST FORM WITH
S* ENTRY POINT ARRAY, EP(.), AND
* THEADARRAY, ADJ(.)

T=I
DO 5 I=1,NCELLS

EP(I)=T
READ(01,*) DUMMY,NADJ,(ADJ(J), J=T,T+NADJ-1)T=T÷NADJ

76

5 CONTINUE
EPSNCELLS+÷)0 TAD (T)-

* ... FOR EACH CELL I GENERATE THE
* ADDRESS ARRAY ADD(.) WHICH
* GIVES THE ADJACENCY LIST
* POSITIONS FOR ALL FLOWS INTO
* CELL I

Lul
DO 8 1=1,NCELLS

DO 8 K-1 LENGTH
IF(ADJ(K).EQ?.I) THEN

ADD(L =K
L L+÷

END IF
8 CONTINUE

ADD(L)=0
* ... READ IN TARGET TRANSITION
* PROBABILITIES TRANS (.) IN
* ADJACENCY LIST FORM

DO 10 1=1,NCELLS
READ(01,*) DUMMY,(TRANS(J), J=EP(I),EP(I+1)-l)

10 CONTINUE
TRANS(EP(NCELLS+1))=O

* ... READ IN SEARCH EFFECTIVENESS

DO 20 =1NCELLS ak.), IN ADJACENCY LIST FORM

READ(O1,*) DUMHY.(A(J), J-EP(I).EP(I+1)-1)
20 CONTINUE

A(EP(NCELLS+1))=O
* ... READ IN STARTING SOLUTION,
* IPATH(.)

READ(01,*) (IPATH(T), T=1,TMAX)

* ... READ IN INITIAL TARGET
* DISTRIBUTION, TGSTRT(.)

DO 30 I=I,NCELLS
30 READ(01,*) DUHMY,TGSTRT(I)

*

11 RETURN
END

SUBROUTINE LOWBND(DELMIN,TGSTRT IT.PLOW,PBESToIPATH)***************************** *************************
* PROGRAMMER: FRANK CALDWELL DATE: SEP 87 *
* PURPOSE% *
* THIS SUBROUTINE REPRESENTS THE SUBSTANTIAL PART OF THE DIVISIBLE *
* EFFORT PROGRAM. IT CONTROLS THE ITERATIVE SEQUENCE OF THE SOLUTION *
* TECHNI QUE BY CALLING VARIOUS SUBROUTINES TO LINEARIZE THE OBJECTIVE *
* FUNCTION, FIND THE SHORTEST PATH, ETC. *

* INPUTS: *
* DELMIN: THE USER DEFINED INTERVAL OF ACCURACY REQUIRED FOR THE *
* LOWER BOUND. THIS ALSO SPECIFIES THE STOPPING CRITERIA *
* TGSTRT: A MATRIX GIVING THE TARGET STARTING DISTRIBUTION *
* ON THE GRID. *
* IT: AN INTEGER GIVING THE DEPTH OF THE TRIAL PATH. *
* PBEST: THE CURRENT BEST PROBABILITY OF NONDETECTION. *
* IPATH: THE CURRENT BEST INTEGER PATH CORRESPONDING TO PBEST. *

* OUTPUTS- *
* PLOW: THE VALUE OF THE LOWER BOUND. *

77

I i

* N... DECLARE / INITIALIZE
INTEGER TMAX, EPLEN
PARAMETER(NCtLLSu25,TMAX•IO ,EPLEN26,LENGTH=200)
INTEGER MARK
INTEGER EP(EPLEN) ,ADJ(LENGTH) B(TMAX) T ADD (LENTH) ,IPATH(ITAX)
REAL XI(LENG'rH,TTAX) XO (NCE LLS THAX)X

1TGOASS(MCELLS) S (NCELLS,TMAX ,A LENGTH °GRAO(LENGTH 4
LENGTHTH),TMAX (aLENGTI ,TMAX),TGST i(NCELLSCOMMON EPADJTRNS,A°XObADD oTMAX,38

... RESET TIME HORIZON
ITMAX=TNAX- IT+1
I COUNTsl
CALL PNDETI (TGSTRT, IT, TGMASS)

* ... CALCULATE FLOW Xl FOR THE
* INITIAL FEASIBLE SOLUTION.
* XO(I) IS THE STARTING SEARCH
* EFFORT IN CELL I

DO 10 ImioNCELLSXO (I) =0
10 CONTINUE

XO(BB(IT)),,
INDEX=EP(BB(IT))
DO 12 T=l,I 9AWI

DO 11 J=lEP(NCELLS+1)-l
XI(J T)=O

11 CONTINUE
XI(INDEX T a)l=
INDEX=EP QADJ (INDEX))

12 CONTINUE

*** * LOWER BOUND AND FRANK-WOLFE (F.W.) METHOD *
* ... FIND PND1, INITIAL NON-* DETECTION PROBABILITY

CALL PNDET(TGMASS,X1 ,FRAC,PND1)

* ... IF PND1 IS LESS THAN PBEST
* THE TRIAL PATH CANNOT BE
* FATHOMED; RETURN.

15 TF((PNDI.LT.PBEST).AND.(IT.NE.1)) GO TO 20
... IF NOT...CONTINUE WITH FRANK-WOLFE METHOD. LINEARIZE OBJ.

* FUNCTION AND FIND THE EXTREME* POINT SOLUTION, X2.
CALL GRADF(TGMASS FRACGRAD)
CALL NEWP(TGMASSGRAD,X2)* ... COMPUTE THE LOWER BOUND PLOW

FOR THE CURRENT SOLUTION
CALL BOUND(XI,X2,GRADDELTA)PLOW=PNDlvDELTA

* ... IF PLOW IS GREATER THEN PBEST
THE TRIAL PATH IS FATHOMED.* ALSO IF PLOW IS KNOWN WITHIN* DELMiN RETURN.

IF ((DELTA.GE.-DELMIN).OR. (PLOW.GT.PBEST)) GOTO 20
* ... IF NOT...CHECK EXTREME POINT
* SOLUTION X2 TO SEE IF IT IS
* BETTER THAN CURRENT PBEST. BY
* F.W. THIS IS GUARANTEED TO BE
* AN INTEGER SOLUTION.

CALL PNDET(TGMASS,X2, FRAC,PND2)
IF(PND2.LT.PBEST) THEN

PBEST-PND2
0O 16 T=1,IT

IPATH(T)=BB(T)
16 CONTINUE

DO 17 T=2,ITMAX

78

h

DO 17 la1,NCEtLS
IF(FRAC I A*H.ITT.9)I THE

END IF IAf(TTIn
17 CONTINUE

IF (IT.NE.1) WRITE(At I(A6 ,F5.4,10(2,X12))) 'PBEST=',PBEST,
IEND IF (-ýfl n,

* ... LINE SEARCH FROM XI TO X2
* RESULT IS X4 AND PND4

CALL SEARCH(TGM&SS,X1PND1,X2,PND2,X4,FPACDPND4)

* ... IF IMPROVEMENT FROM PND1 TO
* PND4 IS SHALL THEN RETURN.
* THIS STOPS F.W. IN THE TAILS.

* IF (ICOUNT.GT.50) GO TO 20 *,UPDATE PNDI AND XlýJT)

PND1wPND4
DO 27 T1l ITMAX-1

DO 21 Ja1,EP(NCELLS+1)-l

27 CONTINUE X1(J,T)aX4(J.T)
ICOUNT=ICOUNTi1
GO TO 15

20 IF(IT.NE.1) WRITE(06,100) PEEST PNDI PLOWICOUNT, (93(T), T=1,IT)
100 FORMAT (3(2X ,FS.4) ,2X,I2,. X, 10 (II,lX))

RETURN
END

SUBOUTNE OVE(TGDNTGTDNF2I*

* PROGRAMMERs FRANK CALDWELL DATE& SEP 87*
PURPOSE:
* THIS SUBROUTINE CONDUCTS A MARKOV TRANSITION ONE PERIOD FORWARD IN*

*IN TIME. IT ESSENTIALLY CONDUCTS THE OPERATION OF POST-MULTIPLYING *
THE ROW VECTOR OF TARGET PROBABILITY MASSES BY THE MARKOV TRANSITION
*MATRIX.

INPUT:
* TGTDN: THE CURRENT TARGET DENSITY*

*OUTPUT:
* TGTDNF:. THE FUTURE TARGET DENSITY AFTER ONE TRANSITION PERIOD

* ... DECLARE / INITIALIZE
INTEGER EPLEN.TMAX
PARAMETER(NCELLS-2S TNAX=1O,EPLEN.26 1LENGTHz200)
INTEGER EP (EPLEN) ,AbJ (LENGTH) DBB(THAX) ADD (LENGTH)
REAL XO(NCELLS) TRANS (LENGTH) ,A(LENGT*(STGTDN(NCELLS),

lTG~lDNF(NCELLS)
COMMON EPADJ,TRANSAXO,ADDITNAX,BB

DO 5 talNCELLS
5 TGTDNF(I)uO

DO 10 1=l.NCELL.S,
DO 10 J=EP;lPI)-

TGTDNF(AJ(J))=TGTDNF(ADJ(J))+TGTDN(I)*TRANS(J)
10 CONTINUE

RETURN
END

SUBROUTINE HOVEP(TGTDNTG *****

79

* PROGRAMMERt FRANK CALDWELL DATEs SEP V7 *
* PURPOSEt ,
• THIS SUBROUTINE CONDUCTS A MARKOV TRANSITION ONE PERIOD BACKWARD *
* IN TIME. IT ESSENTIALLY CONDUCTS THE OPERATION OF POST-MULTIPLYING *
• THE ROW VECTOR OF TARGET PROBABILITY MASSES BY THE MARKOV TRANSITION *
* MATRIX FOR TRANSITION BACKWARDS IN TIME. *

* INPUTz •
• TGTDNi THE CURRENT TARGET DENSITY *

* OUTPUTt ,
* TGTDNPt THE PAST TARGET DENSITY ONE TRANSITION PERIOD BACKWARDS IN *
, IN TIME. *** A**************
* ... DECLARE / INITIALIZE

INTEGER EPLEN TMAX
PARAMETER(NCELLS22S TMAX-10,EPLENa26,LENGTH=200)
INTEGER EP(EPLENIoA6J(LENGTH) BB(TMAX) ADD(LENGT&)
REAL XO(NCELLS),TRANS (LENGTH)A(LENGTH STGTDN(NCELLS),

1TGTDNP(NCELLS)
COMMON EPADJTRANS.A,XOADDITMAXBB

DO 5 I=1,NCELLS
5 TGTDNP(I)=O

DO 10 1=1,NCELLS
DO 10 J=EP (),EP(I+1)-1

TGTDNP()=TGTDNP(I)+TGTDN(ADJ(J))*TRANS(J)
10 CONTINUE

RETURN
END

SUBROUTINE NEWP(TGMASS GRAD X2
• PROGRAMMER: FRANK CALDWELL DATEt SEP 67 *
*PURPOSE: *
A GIVEN THE VALUES OF GRAD(J,T), THIS SUBROUTINE LINEARIZES THE *• OBJECTIVE FUNCTION AND THEN FIND THE SHORTEST PATH THROUGH THE *
* NETWORK VIA DYNAMIC PROGRAMMING. IT ALSO CALCULATES THE SET OF *
* FEASIBLE FLOWS ASSOCIATED WITH THE EXTREME POINT SOLUTION, X2. *
• THIS METHOD OF SOLUTION IS KNOWN AS THE FRANK-WOLFE PROCEDURE. *

* INPUT: *
* TGMASSt THE UPDATED TARGET DISTRIBUTION FOR TIME IT. THIS ACCOUNTS *
* FOR ALL SEARCHES AND TRANSITIONS UP TO AND INCLUDING IT. *
* GRAD: A MATRIX OF PARTIAL DERIVATIVES WITH RESPECT TO EACH ARC *
• IN THE NETWORK. GRAD(JT) IS THE PARTIAL DERIVATIVE OF THE *
* OBJECTIVE FUNCTION WITH RESPECT TO ARC J. *

* OUTPUT: *
x x2: THE SET OF FEASIBLE FLOWS ASSOCTATED WITH THE EXTREME POINT. *

• THESE FLOWS ARE ALONG THE SHORTEST PATH THROUGH THE LINEARIZED *
* NETWORK. *

•... DECLARE/INITALIZE

INTEGER EPLENTMAX
PARAMETER(NCELLS=25,TTMAX=10,EPLEN=26,LENGTH=200)
INTEGER EP(EPLEN) ,ADJ(LENGTH), ,EXT(NCELLS,TMAX),T,ADD(LENGTH),1SBB(TMAX)
REAL A(LENGTH),TRANS(LEN3TH),VOC (NCELLS, TMAX,GRAD(LENGTHTMAX),

1XCELL(NCELLS),X2(LENGTH,TMAX),DUMMY(NCELLS),XO(NCELLS),
2TGMASS(NCELLS)

COMMON EP,ADJTRANS,A,XO,ADD,ITMAX,BB
********~************* FIND SHORTEST PATH ******************************

• ... SET VOC(I,TMAX)=0
DO 10 I=I,NCELLS

80

VOC(I ITMAX) -0o •XT(I, ITMAX)=O
10 CONT E... CALCULATE THE VALUE OF

*CONTINUING, VOC(IT). KEEP
* TRACK OF BEST DECtSION WITH

DO 20 TwITMAX-1 1-1 ARRAY NEXT(I,T).
DO 20 I=1,NdELLS

VOC(I T)-VOC (ADJ(EP(I)),T+1)+GRAD(EP(I),T)
NEXT ± i EP
DO 20 J-EP(I)+1,E?(1i1)-1

TRIAL-VOC(ADJ(J) T+1)+GRAD(J,T)
IF(TRIAL.LT.VOC(±,T)) THEN

VOC(I. T)JTRIALNEXT(±, T) aJ
END IF

20 CONTINUE
******************* CALCULATE NEW FLOW, X2(JT) *
* ... SET XCELL(I EQUAL TO START(I)

WHERE XCELL) KEEPS TRACK OF
* THE TOTAL SEARCH EFFORT IN

EACH CELL.
DO 30 I.1 NCELLS

XCELL (I) =XO (I)
DUMMY(I)=0

30 CONTINUE
DO 35 Twl,ITMAX-1

DO 35 JOEP(N UEP(NCELLS+1)-

* 35 CONTINUE X2(J.T,)0 ... GENERATE X2(J,T) FROM

DO X2(J0T-1) AND NEXT(IT).

DO 40 I=1,NCELLS
JINEXT (I, ,T

"Xg2J,T)XCELL(l)
DUMY(DJ(J))=DLMMY(ADJ(J))+X2(JT)S40 CONTINUE

* PRINT *, 'XCELL' ,XCELL* 4U ,. RESET XCELL(I) FOR NEXT TIME

DO 50 1=1 NCELLS PERIOD.

XCELL (I) 0
XCELL I) DUMMY(I)DUMMY(I)=0

50 CONTINUE
RETURN
END

SUBROUTINE PNDET(TGMASS X FRAC PND
,* PROGRAMMER: FRANK CALDWELL DATE: SEP 87 *
* PURPOSE: *
* GIVEN A SET OF FLOWS, X, THIS PROGRAM CALCULATES THE PROBABILITY

OF TARGET NONDETECTION. *

* INPUT: *
* TGMASS: THE UPDATED TARGET DISTRIBUTION FOR TIME IT. THIS ACCOUNTS *
* FOR ALL SEARCHES AND TRANSITIONS UP TO AND INCLUDING IT. *
* X: A SET OF FEASIBLE FLOWS *

* OUTPUT: *
* PND2 THE PROBABILITY OF NONDETECTION *
* FRAC: A MATRIX GIVING THE FRACTION OF EACH CELL SEARCHED FOR EACH *
* TIME PERIOD. *

81

V _

... INITIALIZE / DECLARE

INTEGER TMAX,EPLEN
PARAMETER fNCELLS=25TMAX=1O EPLEN=26,LENGTH=200)
INTEGER EP(ZPLEN),ADJ(LENGTH) ADD(LENGTH),BB(TMAX),T
REAL XO(NCELLS) TGMASS (NCELLS),X(LENGTH,TMAX) ,FRAC(NCELLS,TMAX),

1A(LENGTH),TRANS(IENGTH),TGTDN(NCELLS),TGTDNF (NCELLS)
COMMON EPADJ,TRANS,AXO,ADD,ITMAX,DB

S* ... DETERMINE THE FRACTION OF
• EACH CELL THAT IS SEARCHED

CALL FRACT(X,FRAC)
* INITIAL TARGET DENSITY IS SET
*A EQUAL TO THE STARTING TARGET
* MASS

DO 10 I=I NCELLS
TGTDN(I)=TGMASS(I)

10 CONTINUE
DO 20 T=1,ITMAX* DO 15 I=1,NCELLS

D ... ACCOUNT FOR SEARCH IN TIME
• PERIOD T

TGTDN(I)=TG7tDN(I)*EXP(-FRAC(I ,T))
15 ('-..rNTUE

S... MOVE TARGET DENSITY FORWARD
*• IN TIME ACCORDING TO MARKOV
• TRANSITION MATRIX

CALL MOVEF(TGTDN,TGTDNF)
S... UPDATE TARGET DENSITY

DO 20 I=I,NCELLS
TGTDN(I)=TGTDNF(I)

20 CONTINUE
S* ... AFTER ITMAX TIME PERIODS OF
S* SEARCH, SUM REMAINING TARGET
• MASS TO FIND PND

PND=0
DO 30 1=1,NCELLS

PND=PND+TGTDN(I)
30 CONTINUE

RETURN
END

SUBROUTINE PNDETI(TGSTRT IT TGMASS

SUROPROGRAMMER: FNK CALDWELL DATE: SEP 87 *
*PURPOSE:

• GIVEN AN INTLGER SOLUTION THIS PROGRAM FINDS THE DISTRIBUtTION *
OF IHE REMAINING TARGET MASS FOR TIME PERIOD IT ACCOUNTING FOR ALL *
SEARCHES AND TRANSITIONS UP TO THE START OF TIME PERIOD IT. *

• INPUTS: *
* TGSTRT: A MATRIX GIVING THE TARGET STARTING DISTRIBUTION ON THE *
' * GRID. *

1': THE DEPTH OF THE TRIAL PATH. *i* '*

* OUTPUTS: *
* TGMASS: THE UPDATED TARGET MASS FOR TIME IT. *

*G ... DECLARE / INITIALIZE
TNTEGER EPLEN, TMX
PARAMETER(NCELLS=25,TMAX=10,EPLENý-26,LENGTH=200)
INTEGER EP(EPLEN),ADJ(LENGTH) T,BB(TMAX),ADD(LENGTH)
REAL XO(NCELLS),TGMASS(NCELLSS,TRANS(LENGTH),A(LENGTH),

IFRACI(NCELLS),FMASS(NCELLS),TGSTRT(NCELLS)
COMMON EP,ADJ,TRANS,A,XO,ADD,ITMAX,BB

82

-%WA

DC 10 1=1,NCELLS
"TGMASS(I)=TGSTRT(I)

10 CONTINUE
IF(IT.EQ.1) GO TO 50DO 30 T=1,IT-I

* ... ACCOUNT FOR SEARCH

TGMASS(BB(T))=TGMASS(BB(T))*EXP(-1.0)
* ... TRANSITION FORWARD IN TIME

CALL MOVEF(TGMASS,FMASS)* ... UPDATE
DO 30 1=1,NCELLS

TGMASS(I)=FMASS(I)
30 CONTINUE
50 RETURN

END

SUBROUTINE REACH(TGMASS FRAC

* PROGRAMMER: FRANK CALDWELL DATE: SEP 87 *
* PURPOSE:

THIS SUBROUTINE CALCULATES THE PROBABILITY OF REACHING CELL I IN *
* TIME PERIOD T. R(I,T). NOTE THAT PROBABILITIES IN THE REACH MATRIX *
* R(I,T) DO NOT ACCOUNT FOR THE SEARCH IN CELL I FOR TIME T. *

* INPUT: *
* TGMASS: THE UPDATED TARGET DISTRIBUTION FOR TIME IT. THIS ACCOUNTS *
* FOR ALL SEARCHES AND TRANSITIONS UP TO AND INCLUDING IT. ** FRAC: A MATRIX GIVING THE FRACTION OF EACH CELL SEARCHED FOR EACH*
* TIME PERIOD. *

*OUTPUT: *
* R: THE MATRIX OF DIMENSION NCELLS BY TMAX OF REACH PROBABILITIES *

* N... DECLARE / INITIALIZE
INTEGER TMAX, EPLEN
PARAMETER(NCELLS=25,TMAX=IO,EPLEN=26,LENGTH=200)
INTEGER EP(EPLEN),ADJ(LENGTH),T,ADD(LENGTH),BB(TMAX)
REAL FRAC(NCELLS,TMAX), TGMASS (NCELLS), R(NCELLS,TMAX),TRANS (LENGTH)

1,A(LENGTH) ,XO(NCELLS),TGTDN(NCELLS),TGTDNF(NCELLS)
COMMON EP,ADJ,TRANS,A,XC, ADD,ITMAXBB

*... FOR TIME PERIOD 1 SET R(I,l)
EQaUAL TO THE PROBABILITY

O 5THE TARGET STARTS IN CELL IDO 5 I=I,NCELLS
R(I ,1)=TGMASS(I)

5 CONTINUE
* ... ITERATIVELY CALCULATE R(I,T)
* FOR ALL OTHER TIME PERIODS

DO 20 T=1,ITMAX-1O ... ACCOUNT FOR SEARCH IN TIME T
DO 10 I=1,NCELLS

TGTDN(I)=R(I,T)*EXP('I.O*FRAC(I,T))
10 CONTINUE

... MOVE DENSITY FORWARD IN TIME
CALL MOVEF(TGTDN,TGTDNF)* ... SET R(I,T+I)

DO 20 I=I,NCELLS
R(I,T+1)=TGTDNF (I)

20 CONTINUE
RETURN
END

SUBROUTINE SEARCH(TGMASS X1 PNDI X2 PND2 X4 FRAC PND42*,,**

83

* PROGRAMMERt FRANK CALDWELL DATE: SEP 87 *
* PURPOSE: *
* THIS PROGRAM CONDUCTS A QUADRATIC LINE SEARCH ALONG THE LINE FROM *
* START POINT Xl TO EXTREME POINT X2 FOR THE POINT THAT MINIMIZES THE *
* PROBABILITY OF TARGET NONDETECTION. THIS MINIMIZING POINT IS THEN *
* USED AS THE START POINT FOR THE NEXT FRANK-WOLFE ITERATION. *

* INPUT: *
* TGMASS: THE UPDATED TARGET DISTRIBUTION FOR TIME IT. THIS ACCOUNTS *
* FOR ALL SEARCHES AND TRANSITIONS UP TO AND INCLUDING IT. *
* Xl: A SET OF FEASIBLE FLOWS ASSOCIATED WITH THE START POINT *
* X2: A SET OF FEASIBLE FLOWS ASSOCIATED WITH THE EXTREME POINT *
* PNDI: THE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN *
* BYX1. *
* PND2: THE PROBABILITY OF NONDETECTION FOR SEARCH FLOWS AS GIVEN *
* BY X2. *

* OUTPUT: *
* x4: THE SET OF FEASIBLE FLOWS ASSOCIATED WITH THE MINIMIZING POINT *
i * FROM THE QUADRATIC LINE SEARCH. *
S* FRAC: THE MATRIX SHOWING THE FRACTION OF CELL I SEARCHED DURING *
* TIME PERIOD T FOR THE SET OF FLOWS GIVEN BY X4. *
* PND4: THE PROBABILITY OF NONDETECTION FOR FLOWS GIVEN BY X4. *

* ... DECLARE / INITIALIZE
INTEGER TMAXEPLEN
PARAMETER (NCELLS=25,TMAX=10o EPLEN=26,LENGTH=200)
INTEGER EP(EPLEN),ADJ(LENGTHST,ADD(LENGTH),COUNT,BB(TMAX) .
REAL X1(LENGTH,TMAX),X2(LENGTH,TMAX) XO(NCELLS),X3(LENGTH,TMAX),

1X4(LENGTH,TMAX),TGHASS(NCELLS),TRANS (LENGTH) ,A(LENGTH),
2FRAC(NCELLS,TMAX)

COMMON EP,ADJ,TRANS,A,XO,ADD,ITMAX,BB
COUNT=l

* DO10T=1 ... GENERATE X3 = .5*(XI+X2)5 DO 10 T=I,ITMAX-I
DO 10 J=1,EP(NCELLS+1)-l

10 CONTINUE X3(JT)=.5*Xl(J,T)+.5*X2(JT)
CALL PNDET(TGMASS,X3,FRAC,PND3)

* ... GENERATE THETA

THETA= .5*(-.75*PND1+PND3-.25*PND2)/(-.5*PND1+PND3-.5*PND2)
IF(THETA.GE.1) THETA=1.0
IF (THETA.LE..001) THETA=.001

* ... GENERATE X4
DO 20 T=1,ITMAX-1

DO 20 J=I,EP(NCELLS+1)-1
X4(J,T)=THETA*X2(J,T)+(l-THETA)*X!(J,T)

20 CONTINUE
CALL PI'DET(TGMASS,X4,FRAC,PND4)

-* OTHERWISE FOR EXTREME THETAS

S* NARROW INTERVAL AND CONDUCT
* ONE MORE SEARCH

IF((THETA.LT..1.OR.THETA.GT..9).AND.COUNT.LT.2) THENCOUNT=COUNT+I
T ... CHECK TO NARROW INTERVAL

IF(THETA.LT..5) THEN
IF(PND4.LE.PND3) THEN

PND2=PND3
DO 40 T=1,ITMAX-1

DO 40 J=1,EP(NCELLS+1)-1
X2(JT)=X3(JT)

40 CONTINUE
ELSE

PND1=PND4
DO 50 T=1,ITMAX-I

84

DO 50 J=I EP(NCELLS+1)-I

50 CONTINUE
END IF

ELSE
IF(PND4.LE.PND3) THEN

PNDI=PND3
DO 60 T=1,ITMAX-1

DO 60 J=1,EP(NCELLS+1)-I
XI(J,T)=X3(J,T)60 CONTINUE

ELSE
PND2=PND4
DO 70 T=1,ITMAX-1

DO 70 J=1,EP(NCELLS+1)-l

70 CONTINUE X2(J,T)=X4(J,T)
END IF

END IF
GO TO 5

END IF
RETURN
END

SUBROUTINE SURVIV(FRAC S'

PROGRAMMER: FRANK CALDWELL DATE: SEP 87 **PURPOSE:*
* THIS PROGRAM CALCULATES THE PROBABILITY OF SURVIVING TO TIME PERIOD*
* TMAX GIVEN THAT THE TARGET IS NONDETECTED IN CELL I BY TIME T. *

* INPUT: *
* FRAC: A MATRIX GIVING THE FRACTION OF EACH CELL SEARCHED FOR EACH *
* TIME PERIOD. *

OUTPUT:
* S: THE MATRIX OF DIMENSION NCELLS BY TMAX OF SURVIVE PROBABILITIES *

* ... DECLARATIONS
INTEGER TMAX,EPLEN
PARAMETER(NCELLS=25,TMAX=10,EPLEN=26,LENGTH=200)
INTEGER EP(EPLEN),ADJ(LENGTH),T,ADD(LENGTH),BB(TMAX)
REAL FRAC(NCELLS TMAX),S(NCELLS TMAX),TRANS(LENGTH),A(LENGTH),

IXO(NCELLS),TGTDN (NCELLS),TGTDNP(NCELLS)
COMMON EP,ADJ,TRANS,A,XO,ADD,ITMAX,BB

* ... SET S(I,TMAX) = 1 FOR ALL I.
DO 5 •=1,NCELLS

S(I,ITMAX)=I
5 CONTINUE

* ... ITERATIVELY CALCULATE S(I,T).
DO 20 T=ITMAX,2,-I

* ... ACCOUNT FOR SEARCH IN TIME T
DO 10 1=1 NCELLS

TGTDN(I)=S(I,T)*EXP(-i.o*FRAC(I, T))10 CONTINUE* ... TRANSITION BACKWARD IN TIME
CALL MOVEP(TGTDN,TGTDNP)* ... SET S(I,T-I)
DO 20 I=I,NCELLS

S(IT-1)=TGTDNP(I)
20 CONTINUE

RETURN
END

85

LIST OF REFERENCES

1. Brown S. S., "Optimal Search for a Moving Target in Discrete Time and Space,"
Operations Research, v. 28, no. 6, pp. 1275-1289, November-December 1980.

2. Eagle J. N., "The Optimal Search for a Moving Target When the Search Path is
Constrained," Operations Research, v. 32, no. 5, pp. 1107-1115, September-
October 1984,

3. Stewart, T. J., "Search for a Moving Target When Searcher Motion is
Restricted," Computers and Operations Research, v. 6, pp. 129-140, 1979.

4. Eagle, J. and Yee, "An Optimal Branch-and-Bound Procedure for Constrained
Path, Moving Target Search Problems,' a forthcoming paper.

5. Frank, M. and Wolfe, P., "An Algorithm for Quadratic Programming," Naval
Research Logistics Quarterly, v. 3, nos. 1-2, pp. 95-110, March-June 1956.

6. Aho, A. V., Hopcroft, J. E., and Ullman, J. D., Data Structures and Algorithms,
Addison-Wesley Publishing Company, 1985.

7. Fletcher, R., Practical Methods of Optimization Volume 1: Unconstrained
Optimization, John Wiley and Sons, 1980.

86

---------_-'- 1-'- .1rl~L.~~&~W ~~' V yPL&A

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 221304-6 145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Professor James EagleI
Naval Postgraduate School, Code 55er
Monterey, CA 93943

4. Professor Richard RosenthalI
Naval Postgraduate School, Code 55r1
Monterey, CA 93943

5. LT James F. Caldwell 2
Naval Submarine School, Code 20
SOAC 88020 Box 700
Groton, CT. 06349-5700

87

